cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271173 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(7) (negated).

This page as a plain text file.
%I A271173 #13 Apr 02 2016 08:59:32
%S A271173 0,1,0,0,7,4,9,2,8,7,4,8,4,1,2,1,8,7,9,1,8,9,6,1,3,3,8,0,7,3,9,2,1,0,
%T A271173 6,7,9,5,9,5,2,5,6,8,3,7,0,7,6,4,6,0,1,0,2,5,2,7,9,2,1,8,5,2,7,4,4,2,
%U A271173 8,8,3,1,0,2,5,9,0,1,2,6,1,5,1,5,5,4,8,1,8,2,1,2,9,7,4,8
%N A271173 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(7) (negated).
%C A271173 The logarithm of the seventh Bendersky constant.
%H A271173 G. C. Greubel, <a href="/A271173/b271173.txt">Table of n, a(n) for n = 0..2000</a>
%F A271173 log(A(7)) = (1/8)*HarmonicNumber(7)*Bernoulli(8) - RiemannZeta'(-7).
%F A271173 log(A(7)) = (Bernoulli(8)/8)*(EulerGamma + log(2*Pi) - Zeta'(8)/Zeta(8)).
%e A271173 -0.010074928748412187918961338073921...
%t A271173 Join[{0}, RealDigits[(BernoulliB[8]/8)*(EulerGamma + Log[2*Pi] - Zeta'[8]/Zeta[8]), 10, 100] // First]
%Y A271173 Cf. A259072, A266554.
%K A271173 nonn,cons
%O A271173 0,5
%A A271173 _G. C. Greubel_, Apr 01 2016