cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271178 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(17).

This page as a plain text file.
%I A271178 #19 Apr 02 2016 06:35:41
%S A271178 7,3,7,5,5,9,0,9,8,8,5,8,6,0,9,8,9,0,0,2,2,6,6,5,5,1,8,0,1,5,6,3,6,6,
%T A271178 0,0,3,5,9,5,1,3,2,8,8,7,4,0,2,4,8,0,1,1,4,6,5,1,9,4,3,1,1,0,3,9,4,2,
%U A271178 3,4,9,7,3,9,4,8,7,9,9,7,2,1,5,7,2,7,5,0,1,8,1,1,2,4,7,9
%N A271178 Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(17).
%C A271178 The logarithm of the seventeenth Bendersky constant.
%H A271178 G. C. Greubel, <a href="/A271178/b271178.txt">Table of n, a(n) for n = 1..2001</a>
%F A271178 log(A(17)) = (1/18)*HarmonicNumber(17)*Bernoulli(18) - RiemannZeta'(-17).
%F A271178 log(A(17)) = (Bernoulli(18)/18)*(EulerGamma + log(2*Pi) - Zeta'(18)/Zeta(18)).
%e A271178 7.3755909885860989002266551801563660035951328874...
%t A271178 RealDigits[(BernoulliB[18]/18)*(EulerGamma + Log[2*Pi] - Zeta'[18]/Zeta[18]), 10, 100][[1]]
%Y A271178 Cf. A266272, A266564.
%K A271178 nonn,cons
%O A271178 1,1
%A A271178 _G. C. Greubel_, Apr 01 2016