cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271204 Triangle of generalized Stirling numbers of the second kind S(n,k) associated with the generalized Bell numbers A271049(n); S(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*Gamma((j+2)/3)*Gamma(3*n+j-1)/(Gamma(j)*Gamma(n+(j-1)/3))/(3^(n-1)*k!).

This page as a plain text file.
%I A271204 #20 Feb 26 2018 05:53:48
%S A271204 1,2,1,40,50,14,1,2240,4240,2200,440,36,1,246400,608960,447200,141520,
%T A271204 22080,1760,68,1,44844800,134780800,125843200,53412800,12015360,
%U A271204 1538320,114800,4900,110,1,12197785600,42767648000,47935328000,25213686400,7308806400,1268761760,137790240,9523920,416000,11050,162,1
%N A271204 Triangle of generalized Stirling numbers of the second kind S(n,k) associated with the generalized Bell numbers A271049(n); S(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*Gamma((j+2)/3)*Gamma(3*n+j-1)/(Gamma(j)*Gamma(n+(j-1)/3))/(3^(n-1)*k!).
%C A271204 The n-th row sum gives A271049(n): Sum_{k=0..2*n}S(n,k) = A271049(n)
%F A271204 Special values of generalized hypergeometric functions of type 5F4, in Maple notation: S(n,k) =  (((-1)^k*(3^(-n))*k/(4*(k!))) *(-12*GAMMA(3*n)*hypergeom([1/3-k/3,2/3-k/3,1-k/3,n+1/3,n+2/3],[1/3,2/3,2/3,4/3],1)/GAMMA(n)+6*(k-1)*GAMMA(4/3)*GAMMA(1+3*n)*hypergeom([2/3-k/3,1-k/3,4/3-k/3,2/3+n,n+1],[2/3,1,4/3,5/3],1)/GAMMA(n+1/3)-(k-2)*(k-1)*GAMMA(5/3)*GAMMA(3*n+2)*hypergeom([1-k/3,4/3-k/3,5/3-k/3,n+1,n+4/3],[4/3,4/3,5/3,2],1)/GAMMA(n+2/3)))
%e A271204 Example: S(n,k) in table form for n=0..4;
%e A271204 1
%e A271204 2,1
%e A271204 40,50,14,1
%e A271204 2240, 4240, 2200, 440, 36, 1
%e A271204 246400, 608960, 447200, 141520, 22080, 1760, 68, 1.
%p A271204 S:=proc(n,k) (((-1)^k*(3^(-n))*k/(4*(k!))) *(-12*GAMMA(3*n)*hypergeom([1/3-k/3,2/3-k/3,1-k/3,n+1/3,n+2/3],[1/3,2/3,2/3,4/3],1)/GAMMA(n)+6*(k-1)*GAMMA(4/3)*GAMMA(1+3*n)*hypergeom([2/3-k/3,1-k/3,4/3-k/3,2/3+n,n+1],[2/3,1,4/3,5/3],1)/GAMMA(n+1/3)-(k-2)*(k-1)*GAMMA(5/3)*GAMMA(3*n+2)*hypergeom([1-k/3,4/3-k/3,5/3-k/3,n+1,n+4/3],[4/3,4/3,5/3,2],1)/GAMMA(n+2/3)));end;
%p A271204 for n from 1 to 6 do seq(round(evalf(S(n,kk))),kk=1..2*n) end do;
%p A271204 # The above Maple program reproduces the data without the initial value 1.
%Y A271204 Cf. A271049.
%K A271204 nonn,tabf
%O A271204 0,2
%A A271204 _Karol A. Penson_, Apr 01 2016