This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271206 #15 Feb 05 2017 06:43:50 %S A271206 1,1,2,4,1,10,4,1,28,18,5,1,89,77,30,6,1,315,345,164,45,7,1,1233,1617, %T A271206 919,299,63,8,1,5285,8003,5262,2011,492,84,9,1,24583,41871,31180, %U A271206 13611,3857,754,108,10,1,123062,231474,191889,94020,30128,6755,1095,135,11,1 %N A271206 Number T(n,k) of set partitions of [n] having exactly k triples (t,t+1,t+2) such that t+i is in block b+i for some b; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows. %H A271206 Alois P. Heinz, <a href="/A271206/b271206.txt">Rows n = 0..100, flattened</a> %H A271206 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A271206 T(3,1) = 1: 1|2|3. %e A271206 T(4,1) = 4: 12|3|4, 14|2|3, 1|24|3, 1|2|34. %e A271206 T(5,1) = 18: 123|4|5, 125|3|4, 12|35|4, 12|3|45, 13|24|5, 1|23|4|5, 145|2|3, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|245|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|345, 1|2|34|5. %e A271206 T(5,2) = 5: 12|3|4|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45. %e A271206 T(5,3) = 1: 1|2|3|4|5. %e A271206 Triangle T(n,k) begins: %e A271206 : 0 : 1; %e A271206 : 1 : 1; %e A271206 : 2 : 2; %e A271206 : 3 : 4, 1; %e A271206 : 4 : 10, 4, 1; %e A271206 : 5 : 28, 18, 5, 1; %e A271206 : 6 : 89, 77, 30, 6, 1; %e A271206 : 7 : 315, 345, 164, 45, 7, 1; %e A271206 : 8 : 1233, 1617, 919, 299, 63, 8, 1; %e A271206 : 9 : 5285, 8003, 5262, 2011, 492, 84, 9, 1; %e A271206 : 10 : 24583, 41871, 31180, 13611, 3857, 754, 108, 10, 1; %p A271206 b:= proc(n, i, t, m) option remember; expand(`if`(n=0, 1, add((v-> %p A271206 `if`(t and v, x, 1)*b(n-1, j, v, max(m, j)))(j=i+1), j=1..m+1))) %p A271206 end: %p A271206 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1, false, 0)): %p A271206 seq(T(n), n=0..14); %t A271206 b[n_, i_, t_, m_] := b[n, i, t, m] = Expand[If[n==0, 1, Sum[Function[v, If[t && v, x, 1]*b[n-1, j, v, Max[m, j]]][j==i+1], {j, 1, m+1}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1, False, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* _Jean-François Alcover_, Feb 05 2017, translated from Maple *) %Y A271206 Column k=0 gives A271207. %Y A271206 Row sums give A000110. %Y A271206 Cf. A185982. %K A271206 nonn,tabf %O A271206 0,3 %A A271206 _Alois P. Heinz_, Apr 01 2016