This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271209 #31 Jun 28 2025 17:53:50 %S A271209 1,3,35,247,1029,3131,7783,16815,32777,59059,100011,161063,248845, %T A271209 371307,537839,759391,1048593,1419875,1889587,2476119,3200021,4084123, %U A271209 5153655,6436367,7962649,9765651,11881403,14348935,17210397,20511179,24300031,28629183,33554465 %N A271209 a(n) = n^5 + n + 1. %C A271209 For n>1 these are odd composite numbers: all terms a(n) are divisible by number h(n) = GCD(n^5+n+1,(n+1)^5+n) = GCD(a(n), a(n+1)-2) = (n*(n+1)+1)*GCD(n*(n+1)-1, 5) where 1 < h(n) < a(n) for all n>1. Sequence of corresponding numbers h(n) for n>1: 35, 13, 21, 31, 43, 285, ... For example, a(7) = 16815 is divisible by number h(7) = (7*(7+1)+1)*GCD(7*(7+1)-1, 5) = 57*GCD(55, 5) = 57*5 = 285. %C A271209 We name a set of k sequences IOPR_k(n) = {a_1(n) = a(n), a_2(n) = a(n) + 2, ..., a_k(n) = a(n) + 2*(k - 1)} as infinite nonprime k-lane road if a arithmetic function a(n) defined by arithmetic operations produces for all n > h (h = a small integer >= 0) odd terms such that all values a(n), a(n) + 2, ..., a(n) + 2*(k - 1) are composites. We say sequences a_1(n) = a(n), a_2(n) = a(n) + 2, ..., a_k(n) = a(n) + 2*(k - 1) are k-th lanes of set IOPR_k(n). %C A271209 For example, sequence A016945(n) = 6*n + 3 = IOPR_1(n) for k=1. %C A271209 This sequence a(n) is 2nd lane of set of sequences IOPR_2(n) = {a_1(n) = A271208(n) = a(n) - 2 = n^5 + n - 1, a_2(n) = a(n) = n^5 + n + 1}. %C A271209 If p = prime > 2 of the form 3m - 1 from A003627 then sets of 2 sequences {n^p + n - 1, n^p + n + 1} = IOPR_2(n) for all p. %C A271209 Also sets of 2 sequences {n^k + n - 1, n^k + n + 1} = IOPR_2(n) for all k>2 from A016789. %C A271209 In general, if k>2 is number of the form 3m - 1 from A016789 then sequences a(n) = n^k + n - 1 and b(n) = a(n) + 2 = n^k + n + 1 produces for all n > 1 odd composite terms. The terms of sequence a(n) = n^k + n - 1 are divisible for all n > 1 by number h(n) = GCD(n^k+n-1,(n-1)^k+n) = GCD(a(n), a(n-1)+2) = (n*(n-1)+1)*GCD(n*(n-1)-1, k) where 1 < h(n) < a(n) for all n>1. The terms of sequence b(n) = a(n) + 2 = n^k + n + 1 are divisible for all n > 1 by number h(n) = GCD(n^k+n+1,(n+1)^k+n) = GCD(a(n), a(n+1)-2) = (n*(n+1)+1)*GCD(n*(n+1)-1, k) where 1 < h(n) < a(n) for all n>1. %C A271209 Are there any sets of sequences IOPR_k(n) for k>2? For example, like set of sequences {A161945(n), A161945(n) + 2, A161945(n) + 4} is not an infinite nonprime 3-lane road because sequence A161945 is not defined by arithmetic operations. %H A271209 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A271209 a(n) = A271208(n) + 2. %F A271209 From _Wesley Ivan Hurt_, Apr 02 2016: (Start) %F A271209 G.f.: (1-3*x+32*x^2+62*x^3+27*x^4+x^5) / (x-1)^6. %F A271209 a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6), n>5. (End) %F A271209 a(n) = A131471(n) + 1. - _Omar E. Pol_, Apr 05 2016 %p A271209 A271209:=n->n^5 + n + 1: seq(A271209(n), n=0..40); # _Wesley Ivan Hurt_, Apr 02 2016 %t A271209 Table[n^5+n+1, {n, 0, 100}] (* _Waldemar Puszkarz_, Apr 02 2016 *) %t A271209 LinearRecurrence[{6,-15,20,-15,6,-1},{1,3,35,247,1029,3131},40] (* _Harvey P. Dale_, Jul 24 2016 *) %o A271209 (Magma) [n^5+n+1: n in[0..100]]; %o A271209 (PARI) for(n=0, 100, print1(n^5+n+1, ", ")) \\ _Waldemar Puszkarz_, Apr 02 2016 %Y A271209 Cf. A003627, A016789, A131471, A161945, A271208. %K A271209 nonn,easy %O A271209 0,2 %A A271209 _Jaroslav Krizek_, Apr 02 2016