A271229 Number of solutions of the congruence y^2 == x^3 + x^2 + x (mod p) as p runs through the primes.
2, 2, 7, 7, 15, 15, 15, 15, 15, 23, 39, 31, 47, 47, 47, 55, 63, 63, 63, 79, 63, 71, 79, 95, 95, 119, 119, 95, 111, 95, 119, 127, 143, 127, 135, 135, 159, 175, 191, 167, 191, 175, 191, 191, 215, 215, 191, 215, 239, 207, 223, 223, 223, 271, 255, 255, 279, 279, 303, 255
Offset: 1
Examples
Here P(n) stands for prime(n). n, P(n), a(n)\ Solutions (x, y) modulo P(n) 1, 2, 2: (0, 0), (1, 1) 2, 3: 2: (0, 0), (1, 0) 3, 5, 7: (0, 0), (2, 2), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) 4, 7, 7: (0, 0), (2, 0), (3, 2), (3, 5), (4, 0), (5, 1), (5, 6) 5, 11, 15: (0, 0), (1, 5), (1, 6), (2, 5), (2, 6), (5, 1), (5, 10), (6, 4), (6, 7), (7, 5), (7, 6), (8, 1), (8, 10), (9, 4), (9, 7) ... -------------------------------------------------------
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Formula
a(n) is the number of solutions of the congruence y^2 == x^3 + x^2 + x (mod prime(n)), n >= 1.
a(n) = prime(n) - A271230(n), n >= 1.
Comments