cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271231 Expansion of the modular cusp form ( eta(q^4) * eta(q^12) )^4 / ( eta(q^2) * eta(q^6) * eta(q^8) * eta(q^24) ), where eta is Dedekind's eta function.

Table of values

n a(n)
0 0
1 1
2 0
3 1
4 0
5 -2
6 0
7 0
8 0
9 1
10 0
11 -4
12 0
13 -2
14 0
15 -2
16 0
17 2
18 0
19 4
20 0
21 0
22 0
23 8
24 0
25 -1
26 0
27 1
28 0
29 6
30 0
31 -8
32 0
33 -4
34 0
35 0
36 0
37 6
38 0
39 -2
40 0
41 -6
42 0
43 -4
44 0
45 -2
46 0
47 0
48 0
49 -7
50 0
51 2
52 0
53 -2
54 0
55 8
56 0
57 4
58 0
59 -4
60 0
61 -2
62 0
63 0
64 0
65 4
66 0
67 4
68 0
69 8
70 0
71 -8
72 0
73 10
74 0
75 -1
76 0
77 0
78 0
79 8
80 0
81 1
82 0
83 4
84 0
85 -4
86 0
87 6
88 0
89 -6
90 0
91 0
92 0
93 -8
94 0
95 -8
96 0
97 2
98 0
99 -4
100 0
101 -18
102 0
103 -16

List of values

[0, 1, 0, 1, 0, -2, 0, 0, 0, 1, 0, -4, 0, -2, 0, -2, 0, 2, 0, 4, 0, 0, 0, 8, 0, -1, 0, 1, 0, 6, 0, -8, 0, -4, 0, 0, 0, 6, 0, -2, 0, -6, 0, -4, 0, -2, 0, 0, 0, -7, 0, 2, 0, -2, 0, 8, 0, 4, 0, -4, 0, -2, 0, 0, 0, 4, 0, 4, 0, 8, 0, -8, 0, 10, 0, -1, 0, 0, 0, 8, 0, 1, 0, 4, 0, -4, 0, 6, 0, -6, 0, 0, 0, -8, 0, -8, 0, 2, 0, -4, 0, -18, 0, -16]