This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271264 #10 Mar 07 2020 05:40:56 %S A271264 876611,1163653,1471079,1608769,2367289,2368759,2538103,2564857, %T A271264 2621501,2693629,2774381,3120713,3495269,3498797,3636781,3974881, %U A271264 4240853,4376681,4571309,4654217,4702433,4867171,5047883,5066993,5629121,5644213,5760343,5779649,6262397 %N A271264 Septic artiads (A270800) congruent to 1 mod 98 and for which 7 is a 7th power residue. %C A271264 Septic hyperartiads (A270801) congruent to 1 mod 98. %H A271264 Eric M. Schmidt, <a href="/A271264/b271264.txt">Table of n, a(n) for n = 1..100</a> %H A271264 E. Lehmer, <a href="http://dx.doi.org/10.1016/0022-247X(66)90145-4">Artiads characterized</a>, J. Math. Anal. Appl. 15 1966 118-131. See p. 128-129, Theorem 8. %H A271264 E. Lehmer, <a href="/A001583/a001583b.pdf">Artiads characterized</a>, J. Math. Anal. Appl. 15 1966 118-131 [annotated and corrected scanned copy] %o A271264 (Sage) %o A271264 def isa(n) : %o A271264 if not (n % 98 == 1 and is_prime(n)) : return False %o A271264 R.<t> = PolynomialRing(GF(n)) %o A271264 return 7.powermod((n-1)//7, n) == 1 and all(r[0]^((n-1)//7) == 1 for r in (t^3 + t^2 - 2*t - 1).roots()) %Y A271264 Cf. A001583, A270800, A270801. %K A271264 nonn %O A271264 1,1 %A A271264 _Eric M. Schmidt_, Apr 03 2016