A271267 Even numbers k such that k + 2 divides k^k + 2.
4, 16, 196, 2836, 5956, 25936, 65536, 540736, 598816, 797476, 1151536, 3704416, 8095984, 11272276, 13362420, 21235696, 29640832, 31084096, 42913396, 49960912, 55137316, 70254724, 70836676, 81158416, 94618996, 111849956, 129275056, 150026176, 168267856, 169242676, 189796420, 192226516, 198464176, 208232116, 244553296, 246605776, 300018016, 318143296
Offset: 1
Keywords
Examples
4 is a term because 4 + 2 = 6 divides 4^4 + 2 = 258.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..150
Programs
-
Mathematica
Select[Range[2, 10^4, 2], Divisible[#^# + 2, # + 2] &] (* Michael De Vlieger, Apr 03 2016 *)
-
PARI
lista(nn) = forstep(n=2, nn, 2, if( Mod(n, n+2)^n == -2 , print1(n, ", "))); \\ Joerg Arndt, Apr 03 2016
-
Python
def afind(limit): k = 2 while k < limit: if (pow(k, k, k+2) + 2)%(k+2) == 0: print(k, end=", ") k += 2 afind(10**7) # Michael S. Branicky, Apr 16 2021
Comments