This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271316 #9 Apr 05 2016 01:02:59 %S A271316 1,2,1,8,8,1,24,36,14,1,64,128,88,24,1,160,400,400,200,42,1,384,1152, %T A271316 1520,1120,444,76,1,896,3136,5152,5040,2968,980,142,1,2048,8192,16128, %U A271316 19712,15456,7616,2160,272,1,4608,20736,47616,69888,68544,45024,19104,4752,530,1,10240,51200,134400,230400,271488,223104,126240,47040,10420,1044,1 %N A271316 Triangle of numbers where T(n,k) is the number of k-dimensional faces on a partially truncated n-cube, 0 <= k <= n. %H A271316 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_cube">Truncated cube</a> %F A271316 G.f. for rows (n > 0): (x+2)^n + 2^n*(x+1)*((x+1)^(n-1)-1)/x. %F A271316 O.g.f: 1 + 1/(1-(x+2)*y) + 1/(x*(1-2*y*(x+1))) - (x+1)/(x*(1-2*y)). %F A271316 E.g.f: 1 + exp((x+2)*z) + (exp(2*z*(x+1))-(x+1)*exp(2*z))/x. %e A271316 Triangle begins: %e A271316 1; %e A271316 2, 1; %e A271316 8, 8, 1; %e A271316 24, 36, 14, 1; %e A271316 64, 128, 88, 24, 1; %e A271316 ... %e A271316 Row 2 describes an octagon: 8 vertices and 8 edges. %e A271316 Row 3 describes a truncated cube: 24 vertices, 36 edges, and 14 faces. %t A271316 Flatten[Table[ %t A271316 CoefficientList[ %t A271316 D[1 + Exp[(x + 2) z] + ( Exp[2 z (x + 1)] - (x + 1) Exp[2 z])/x, {z, %t A271316 k}] /. z -> 0, x], {k, 0, 10}]] %Y A271316 Cf. A038207 (n-cube). %K A271316 nonn,tabl %O A271316 0,2 %A A271316 _Vincent J. Matsko_, Apr 03 2016