A271327 Integers k such that the k-th prime divides the product of the first k nonzero Fibonacci numbers.
18, 24, 29, 30, 46, 47, 51, 60, 63, 71, 82, 89, 98, 100, 102, 121, 123, 127, 135, 136, 139, 145, 149, 152, 156, 157, 162, 163, 165, 169, 180, 181, 184, 185, 221, 225, 235, 251, 252, 313, 316, 326, 327, 329, 331, 337, 359, 362, 369, 399, 401, 405, 428, 431, 434, 436, 440, 445, 448, 463
Offset: 1
Keywords
Examples
5 is not a term because A000040(5) = 11 does not appear as a prime divisor of any of the first 5 nonzero Fibonacci numbers. 18 is a term because A003266(18) = 342696507457909818131702784000 is divisible by A000040(18) = 61.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
PARI
lista(nn) = for(n=1, nn, my(p = prime(n)); if (lift(prod(i=1, n, Mod(fibonacci(i), p))) == 0, print1(n, ", ")));
-
Python
from sympy import prime A271327_list = [] for n in range(1,10**3): p, a, b = prime(n), 1, 1 for i in range(n): if not a: A271327_list.append(n) break a, b = b, (a + b) % p # Chai Wah Wu, Apr 08 2016
Comments