A271344 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers multiplied by -1, interleaved with k-1 zeros, but T(n,1) = 1 and the first element of column k is in row k(k+1)/2.
1, 1, 1, -1, 1, 0, 1, -3, 1, 0, -1, 1, -5, 0, 1, 0, 0, 1, -7, -3, 1, 0, 0, -1, 1, -9, 0, 0, 1, 0, -5, 0, 1, -11, 0, 0, 1, 0, 0, -3, 1, -13, -7, 0, -1, 1, 0, 0, 0, 0, 1, -15, 0, 0, 0, 1, 0, -9, -5, 0, 1, -17, 0, 0, 0, 1, 0, 0, 0, -3, 1, -19, -11, 0, 0, -1, 1, 0, 0, -7, 0, 0, 1, -21, 0, 0, 0, 0, 1, 0, -13, 0, 0, 0
Offset: 1
Examples
Triangle begins: 1; 1; 1, -1; 1, 0; 1, -3; 1, 0, -1; 1, -5, 0; 1, 0, 0; 1, -7, -3; 1, 0, 0, -1; 1, -9, 0, 0; 1, 0, -5, 0; 1, -11, 0, 0; 1, 0, 0, -3; 1, -13, -7, 0, -1; 1, 0, 0, 0, 0; 1, -15, 0, 0, 0; 1, 0, -9, -5, 0; 1, -17, 0, 0, 0; 1, 0, 0, 0, -3; 1, -19, -11, 0, 0, -1; 1, 0, 0, -7, 0, 0; 1, -21, 0, 0, 0, 0; 1, 0, -13, 0, 0, 0; 1, -23, 0, 0, -5, 0; 1, 0 0, -9, 0, 0; 1, -25, -15, 0, 0, -3; 1, 0, 0, 0, 0, 0, -1; ... For n = 24 the divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24 so the deficiency of 24 is 24 - 12 - 8 - 6 - 4 - 3 - 2 - 1 = -12. On the other hand the 24th row of triangle is 1, 0, -13, 0, 0, 0, and the alternating row sum is 1 - 0 +(-13) - 0 + 0 - 0 = -12, equaling the deficiency of 24; A033879(24) = -12, so 24 is an abundant number (A005101). For n = 27 the divisors of 27 are 1, 3, 9, 27 so the deficiency of 27 is 27 - 9 - 3 - 1 = 14. On the other hand the 27th row of triangle is 1, -25, -15, 0, 0, -3, and the alternating row sum is 1 -(-25) +(-15) - 0 + 0 -(-3) = 14, equalling the deficiency of 27; A033879(27) = 14, so 27 is a deficient number (A005100). For n = 28 the divisors of 28 are 1, 2, 4, 7, 14, 28 so the deficiency of 28 is 28 - 14 - 7 - 4 - 2 - 1 = 0. On the other hand the 28th row of triangle is 1, 0, 0, 0, 0, 0, -1, and the alternating row sum is 1 - 0 + 0 - 0 + 0 - 0 +(-1) = 0, equaling the deficiency of 28; A033879(28) = 0, so 28 is a perfect number (A000396).
Comments