A271365 Number of ordered ways to write n as u^2 + v^3 + x^4 + y^5 + z^6, where u is a positive integer, and v, x, y, z are nonnegative integers.
1, 4, 6, 5, 5, 6, 4, 1, 2, 7, 9, 6, 4, 3, 1, 1, 6, 12, 10, 4, 3, 3, 1, 1, 6, 12, 11, 7, 6, 4, 2, 4, 9, 12, 8, 5, 10, 12, 6, 2, 5, 9, 8, 8, 10, 6, 2, 3, 8, 13, 10, 8, 11, 8, 2, 1, 6, 10, 8, 7, 6, 2, 2, 7, 15, 20, 14, 9, 13, 11
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 1^2 + 0^3 + 0^4 + 0^5 + 0^6. a(8) = 1 since 8 = 2^2 + 1^3 + 1^4 + 1^5 + 1^6. a(15) = 1 since 15 = 2^2 + 2^3 + 1^4 + 1^5 + 1^6. a(16) = 1 since 16 = 4^2 + 0^3 + 0^4 + 0^5 + 0^6. a(23) = 1 since 23 = 2^2 + 1^3 + 2^4 + 1^5 + 1^6. a(24) = 1 since 24 = 4^2 + 2^3 + 0^4 + 0^5 + 0^6. a(56) = 1 since 56 = 4^2 + 2^3 + 0^4 + 2^5 + 0^6.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x1^6-x2^5-x3^4-x4^3],r=r+1],{x1,0,n^(1/6)},{x2,0,(n-x1^6)^(1/5)},{x3,0,(n-x1^6-x2^5)^(1/4)},{x4,0,(n-x1^6-x2^5-x3^4)^(1/3)}];Print[n," ",r];Continue,{n,1,70}]
Comments