This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271373 #30 Sep 11 2021 10:10:40 %S A271373 2,1,3,3,3,3,2,2,4,6,8,8,7,4,1,5,10,17,21,21,21,13,10,6,4,6,15,30,45, %T A271373 54,54,49,46,21,3,1,7,21,49,87,121,145,145,145,121,92,56,33,20,14,7,3, %U A271373 1,1,8,28,74,148,238,324,367,367,320,258,188,122,69,37,12,6,3 %N A271373 Triangle T(n,k) read by rows giving the number of k-digit polydivisible numbers (see A144688) in base n with 1 <= k <= A109783(n). %H A271373 Max Alekseyev, <a href="/A271373/b271373.txt">Table of n, a(n) for n = 2..810</a> %H A271373 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polydivisible_number">Polydivisible number</a>. %F A271373 T(n,k) ~ (n-1)*n^(k-1)/k! %F A271373 T(10,k) = A143671(k), 1 <= k <= 25. %e A271373 The triangle begins %e A271373 n\k 1 2 3 4 5 6 7 8 9 10 ... %e A271373 2: 2 1 %e A271373 3: 3 3 3 3 2 2 %e A271373 4: 4 6 8 8 7 4 1 %e A271373 5: 5 10 17 21 21 21 13 10 6 4 %e A271373 ... %p A271373 b:=10; # Base %p A271373 P:={seq(i,i=1..b-1)}: # Polydivisible numbers %p A271373 M:=[nops(P)+1]: # Number of k-digit polydivisible numbers %p A271373 for i from 2 while nops(P)>0 do %p A271373 Q:={}: %p A271373 for n from 1 to nops(P) do %p A271373 for j from 0 to b-1 do %p A271373 if P[n]*b+j mod i = 0 then Q:={op(Q),P[n]*b+j}: fi: %p A271373 od: %p A271373 od: %p A271373 M:=[op(M),nops(Q)]: %p A271373 P:=Q; %p A271373 od: %p A271373 T||b:=op(M[1..nops(M)-1]); # Table row T(n,k) for n = b %Y A271373 Cf. A109783 (row lengths), A143671 (row n=10), A144688, A271374 (row sums). %K A271373 nonn,base,tabf %O A271373 2,1 %A A271373 _Martin Renner_, Apr 05 2016 %E A271373 Rows n=17 to n=25 added to b-file by _Max Alekseyev_, Sep 11 2021