This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271423 #22 May 14 2023 13:08:25 %S A271423 1,0,1,0,1,1,0,4,0,1,0,5,9,0,1,0,16,25,10,0,1,0,82,70,35,15,0,1,0,169, %T A271423 406,245,35,21,0,1,0,541,2093,1036,385,56,28,0,1,0,2272,10935,4984, %U A271423 2331,504,84,36,0,1,0,17966,41961,37990,13335,3717,840,120,45,0,1 %N A271423 Number T(n,k) of set partitions of [n] with maximal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A271423 At least one block length occurs exactly k times, and all block lengths occur at most k times. %H A271423 Alois P. Heinz, <a href="/A271423/b271423.txt">Rows n = 0..140, flattened</a> %H A271423 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %e A271423 T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234. %e A271423 T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34. %e A271423 T(4,4) = 1: 1|2|3|4. %e A271423 Triangle T(n,k) begins: %e A271423 1; %e A271423 0, 1; %e A271423 0, 1, 1; %e A271423 0, 4, 0, 1; %e A271423 0, 5, 9, 0, 1; %e A271423 0, 16, 25, 10, 0, 1; %e A271423 0, 82, 70, 35, 15, 0, 1; %e A271423 0, 169, 406, 245, 35, 21, 0, 1; %e A271423 0, 541, 2093, 1036, 385, 56, 28, 0, 1; %e A271423 0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1; %e A271423 0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1; %e A271423 ... %p A271423 with(combinat): %p A271423 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A271423 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) %p A271423 *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) %p A271423 end: %p A271423 T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)): %p A271423 seq(seq(T(n, k), k=0..n), n=0..12); %t A271423 multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]] * b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]]; T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 06 2017, after _Alois P. Heinz_ *) %Y A271423 Columns k=0-10 give: A000007, A007837 (for n>0), A271731, A271732, A271733, A271734, A271735, A271736, A271737, A271738, A271739. %Y A271423 Row sums give A000110. %Y A271423 Main diagonal gives A000012. %Y A271423 T(2n,n) gives A271425. %Y A271423 Cf. A271424. %K A271423 nonn,tabl %O A271423 0,8 %A A271423 _Alois P. Heinz_, Apr 07 2016