A273823 Table read by rows: the n-th row is the list of numbers to the left of n in the natural numbers read by antidiagonals.
1, 2, 1, 3, 4, 2, 1, 5, 3, 6, 7, 4, 2, 1, 8, 5, 3, 9, 6, 10, 11, 7, 4, 2, 1, 12, 8, 5, 3, 13, 9, 6, 14, 10, 15, 16, 11, 7, 4, 2, 1, 17, 12, 8, 5, 3, 18, 13, 9, 6, 19, 14, 10, 20, 15, 21, 22, 16, 11, 7, 4, 2, 1, 23, 17, 12, 8, 5, 3, 24, 18, 13, 9, 6, 25, 19, 14
Offset: 1
Examples
A000027 read by antidiagonals is: 1 2 4 7 3 5 8 6 9 ... Thus: Row 1: [] Row 2: [1] Row 3: [] Row 4: [2, 1] Row 5: [3] Row 6: [] Row 7: [4, 2, 1] Row 8: [5, 3] Row 9: [6]
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a273823 n = genericIndex a273823_list (n - 1) a273823_list = concatMap a273823_row [1..] a273823_tabf = map a273823_row [1..] a273823_row n | a_i == 0 = [] | otherwise = a_i : a273823_row a_i where a_i = a271439 n
-
Mathematica
nn = 32; t = Table[(n^2 - n)/2 + Accumulate@ Range[n - 1, Ceiling[(Sqrt[9 + 8 nn] - 3)/2]] + 1, {n, Ceiling[(Sqrt[9 + 8 nn] - 3)/2] + 1}]; Table[Reverse@ Take[t[[#1]], #2 - 1] & @@ Flatten@ Position[t, n], {n, nn}] // Flatten (* Michael De Vlieger, Jun 10 2016 *)