This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271452 #16 Feb 16 2025 08:33:33 %S A271452 3,1,4,1,5,9,2,6,5,3,6,4,3,8,2,2,2,1,0,3,6,3,1,7,8,8,9,3,4,4,0,0,7,2, %T A271452 3,4,1,6,8,7,6,9,1,5,0,9,4,2,8,5,9,6,9,5,2,1,0,6,0,7,1,5,2,4,0,7,6,2, %U A271452 8,2,4,9,3,7,2,5,4,1,2,8,4,3,3,4,7,8,0,7,8,9,8,4,0,6,1,2,3,7,1,8,6,7,7,3,7 %N A271452 Decimal expansion of Hoffman's approximation to Pi. %C A271452 The expression (Googol/11222.11122)^(1/193), with Googol fixed as 10^100, approximates Pi with an absolute error of about 5.4e-11. The 'symmetry' of the denominator, the fact that 193 is a prime, and the fact that it relates Pi with Googol make it a rare curiosity. %H A271452 Stanislav Sykora, <a href="/A271452/b271452.txt">Table of n, a(n) for n = 1..1000</a> %H A271452 D. W. Hoffman, <a href="http://www.jstor.org/stable/25653799">A Pi Curiosity</a>, College Mathematics Journal, 40 (2009), 399. %H A271452 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Googol.html">Googol</a>. %H A271452 Wikipedia, <a href="http://en.wikipedia.org/wiki/Approximations_of_%CF%80">Approximations of Pi</a>. %H A271452 Wikipedia, <a href="http://en.wikipedia.org/wiki/Googol">Googol</a>. %e A271452 3.141592653643822210363178893440072341687691509428596952106071524 ... %o A271452 (PARI) (10^100/11222.11122)^(1/193) %o A271452 (Magma) SetDefaultRealField(RealField(100)); (10^100/11222.11122)^(1/193); // _G. C. Greubel_, Nov 04 2018 %Y A271452 Cf. A000796, A244450. %K A271452 nonn,cons %O A271452 1,1 %A A271452 _Stanislav Sykora_, Apr 08 2016