This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271472 #28 Jan 22 2023 20:44:40 %S A271472 0,1,1100,1101,111010000,111010001,111011100,111011101,111000000, %T A271472 111000001,111001100,111001101,100010000,100010001,100011100, %U A271472 100011101,100000000,100000001,100001100,100001101,110011010000,110011010001,110011011100,110011011101,110011000000,110011000001 %N A271472 Binary representation of n in base i-1. %C A271472 This is A066321 converted from base 10 to base 2. %C A271472 Every Gaussian integer r+s*i (r, s ordinary integers) has a unique representation as a sum of powers of t = i-1. For example 3 = 1+b^2+b^3, that is, "1101" in binary, which explains a(3) = 1101. See A066321 for further information. %C A271472 From _Jianing Song_, Jan 22 2023: (Start) %C A271472 Also binary representation of n in base -1-i. %C A271472 Write out n in base -4 (A007608), then change each digit 0, 1, 2, 3 to 0000, 0001, 1100, 1101 respectively. (End) %D A271472 D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 172. (See also exercise 16, p. 177; answer, p. 494.) %D A271472 W. J. Penney, A "binary" system for complex numbers, JACM 12 (1965), 247-248. %H A271472 Chai Wah Wu, <a href="/A271472/b271472.txt">Table of n, a(n) for n = 0..10000</a> %H A271472 N. J. A. Sloane, <a href="/A066321/a066321.txt">Table of n, (I-1)^n for n=0..100</a> %H A271472 Wikipedia, <a href="https://en.wikipedia.org/wiki/Complex-base_system">Complex-base system</a> %o A271472 (Python) %o A271472 from gmpy2 import c_divmod %o A271472 u = ('0000','1000','0011','1011') %o A271472 def A271472(n): %o A271472 if n == 0: %o A271472 return 0 %o A271472 else: %o A271472 s, q = '', n %o A271472 while q: %o A271472 q, r = c_divmod(q, -4) %o A271472 s += u[r] %o A271472 return int(s[::-1]) # _Chai Wah Wu_, Apr 09 2016 %o A271472 (PARI) a(n) = my(v = [n,0], x=0, digit=0, a, b); while(v!=[0,0], a=v[1]; b=v[2]; v[1]=-2*(a\2)+b; v[2]=-(a\2); x+=(a%2)*10^digit; digit++); x \\ _Jianing Song_, Jan 22 2023; [a,b] represents the number a + b*(-1+i) %Y A271472 Cf. A066321. %K A271472 nonn,base,easy %O A271472 0,3 %A A271472 _N. J. A. Sloane_, Apr 08 2016