This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271486 #18 Jan 08 2018 09:34:05 %S A271486 1,2,3,4,6,8,11,16,22,30,43,60,82,113,162,224,306,435,610,836,1168, %T A271486 1637,2282,3120,4399,6131,8522,11812,16561,22933,31810,44468,62335, %U A271486 85639,119452,167281,233169,320747,449700,626513,872175 %N A271486 Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,13,23). %H A271486 Ilya Amburg, Krishna Dasaratha, Laure Flapan, Thomas Garrity, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse, Matthew Stoffregen, <a href="http://arxiv.org/abs/1509.05239">Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences</a>, arXiv:1509.05239 [math.CO], 2015. %p A271486 A271486T := proc(n) %p A271486 option remember; %p A271486 local an ; %p A271486 if n = 1 then %p A271486 [1,1,1] ; %p A271486 else %p A271486 an := procname(floor(n/2)) ; %p A271486 if type(n,'even') then %p A271486 # apply F0 %p A271486 [op(1,an)+op(3,an),op(3,an),op(2,an)] ; %p A271486 else %p A271486 # apply F1 %p A271486 [op(1,an),op(1,an)+op(3,an),op(2,an)] ; %p A271486 end if; %p A271486 end if; %p A271486 end proc: %p A271486 A271486 := proc(n) %p A271486 local a,l,nmax; %p A271486 a := 0 ; %p A271486 for l from 2^n to 2^(n+1)-1 do %p A271486 nmax := max( op(A271486T(l)) ); %p A271486 a := max(a,nmax) ; %p A271486 end do: %p A271486 a ; %p A271486 end proc: # _R. J. Mathar_, Apr 16 2016 %t A271486 A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[1]] + an[[3]], an[[3]], an[[2]]}, {an[[1]], an[[1]] + an[[3]], an[[2]]}]]]; %t A271486 a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a]; %t A271486 Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 19}] (* _Jean-François Alcover_, Nov 17 2017, after _R. J. Mathar_ *) %Y A271486 For sequences mentioned in Conjecture 5.8 of Amburg et al. (2015) see A271485, A000930, A271486, A271487, A271488, A164001, A000045, A271489. %K A271486 nonn,more %O A271486 0,2 %A A271486 _N. J. A. Sloane_, Apr 13 2016 %E A271486 a(20)-a(40) from _Lars Blomberg_, Jan 08 2018