This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271487 #21 Jan 08 2018 09:34:23 %S A271487 1,2,3,4,6,8,11,17,23,32,48,65,90,136,184,255,385,521,722,1090,1475, %T A271487 2044,3086,4176,5787,8737,11823,16384,24736,33473,46386,70032,94768, %U A271487 131327,198273,268305,371810,561346,759619,1052660,1589270 %N A271487 Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,13,132). %H A271487 I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, <a href="http://arxiv.org/abs/1509.05239">Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences</a>, arXiv:1509.05239v1 [math.CO] 17 Sep 2015. See Conjecture 5.8. %F A271487 Conjectures from _Colin Barker_, Apr 16 2016: (Start) %F A271487 a(n) = 2*a(n-3)+2*a(n-6)+a(n-9) for n>9. %F A271487 G.f.: (1+x)*(1+x+2*x^2+2*x^4+x^6+x^8) / (1-2*x^3-2*x^6-x^9). %F A271487 (End) %p A271487 A271487T := proc(n) %p A271487 option remember; %p A271487 local an ; %p A271487 if n = 1 then %p A271487 [1,1,1] ; %p A271487 else %p A271487 an := procname(floor(n/2)) ; %p A271487 if type(n,'even') then %p A271487 # apply F0 %p A271487 [op(1,an)+op(3,an),op(3,an),op(2,an)] ; %p A271487 else %p A271487 # apply F1 %p A271487 [op(2,an),op(1,an)+op(3,an),op(1,an)] ; %p A271487 end if; %p A271487 end if; %p A271487 end proc; %p A271487 A271487 := proc(n) %p A271487 local a,l,nmax; %p A271487 a := 0 ; %p A271487 for l from 2^n to 2^(n+1)-1 do %p A271487 nmax := max( op(A271487T(l)) ); %p A271487 a := max(a,nmax) ; %p A271487 end do: %p A271487 a ; %p A271487 end proc: # _R. J. Mathar_, Apr 16 2016 %t A271487 A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1 , {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[1]] + an[[3]], an[[3]], an[[2]]}, {an[[2]], an[[1]] + an[[3]], an[[1]]}]]]; %t A271487 a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a]; %t A271487 Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 24}] (* _Jean-François Alcover_, Nov 17 2017, after _R. J. Mathar_ *) %Y A271487 For sequences mentioned in Conjecture 5.8 of Amburg et al. (2015) see A271485, A000930, A271486, A271487, A271488, A164001, A000045, A271489. %K A271487 nonn,more %O A271487 0,2 %A A271487 _N. J. A. Sloane_, Apr 13 2016 %E A271487 More terms from _Jean-François Alcover_, Nov 17 2017 %E A271487 a(25)-a(40) from _Lars Blomberg_, Jan 08 2018