A271488 Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,23,e).
1, 2, 3, 4, 5, 8, 11, 15, 21, 30, 41, 56, 79, 112, 153, 209, 297, 418, 571, 782, 1109, 1560, 2131, 2940, 4141, 5822, 7953, 10981, 15455, 21728, 29681, 41003, 57681, 81090, 110771, 153105, 215269, 302632, 413403, 571428, 803397
Offset: 0
Links
- I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239v1 [math.CO] 17 Sep 2015. See Conjecture 5.8.
Crossrefs
Programs
-
Maple
A271488T := proc(n) option remember; local an ; if n = 1 then [1,1,1] ; else an := procname(floor(n/2)) ; if type(n,'even') then # apply F0 [op(2,an),op(1,an)+op(3,an),op(3,an)] ; else # apply F1 [op(1,an),op(2,an),op(1,an)+op(3,an)] ; end if; end if; end proc: A271488 := proc(n) local a,l,nmax; a := 0 ; for l from 2^n to 2^(n+1)-1 do nmax := max( op(A271488T(l)) ); a := max(a,nmax) ; end do: a ; end proc: # R. J. Mathar, Apr 16 2016
-
Mathematica
A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[2]], an[[1]] + an[[3]], an[[3]]}, {an[[1]], an[[2]], an[[1]] + an[[3]]}]]]; a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 17 2017, after R. J. Mathar *)
Extensions
a(4) corrected by Jean-François Alcover and Vaclav Kotesovec, Nov 18 2017
a(21)-a(24) from Vaclav Kotesovec, Nov 18 2017
a(25)-a(26) from Vaclav Kotesovec, Nov 29 2017
a(27)-a(40) from Lars Blomberg, Jan 08 2018