A271489 Maximal term of TRIP-Stern sequence of level n corresponding to permutation triple (e,132,e).
1, 2, 3, 4, 5, 7, 10, 13, 18, 25, 34, 46, 64, 85, 117, 163, 217, 298, 415, 553, 759, 1057, 1408, 1933, 2692, 3586, 4923, 6856, 9133, 12538, 17461, 23260, 31932, 44470, 59239, 81325, 113257, 150871, 207120, 288445, 384241
Offset: 0
Links
- I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015-2017. See Conjecture 5.8.
Crossrefs
Programs
-
Maple
A271489T := proc(n) option remember; local an,nrecur ; if n = 1 then [1,1,1] ; else an := procname(floor(n/2)) ; if type(n,'even') then # apply F0 [op(3,an),op(1,an)+op(3,an),op(2,an)] ; else # apply F1 [op(1,an),op(2,an),op(1,an)+op(3,an)] ; end if; end if; end proc; A271489 := proc(n) local a,l,nmax; a := 0 ; for l from 2^n to 2^(n+1)-1 do nmax := max( op(A271489T(l)) ); a := max(a,nmax) ; end do: a ; end proc: # R. J. Mathar, Apr 16 2016
-
Mathematica
A271487T[n_] := A271487T[n] = Module[{an}, If[n == 1, {1, 1, 1}, an = A271487T[Floor[n/2]]; If[EvenQ[n], {an[[3]], an[[1]] + an[[3]], an[[2]]}, {an[[1]], an[[2]], an[[1]] + an[[3]]}]]]; a[n_] := a[n] = Module[{a = 0, l, nMax}, For[l = 2^n, l <= 2^(n + 1) - 1, l++, nMax = Max[A271487T[l]]; a = Max[a, nMax]]; a]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 17 2017, after R. J. Mathar *)
Formula
Conjectures from Lars Blomberg, Jan 08 2018: (Start)
n mod 3 == 0: a(n)=a(n-1)+a(n-4) for n>5.
n mod 3 == 1: a(n)=a(n-1)+a(n-4)-a(n-10) for n>9.
n mod 3 == 2: a(n)=a(n-1)+a(n-4)-a(n-14)-a(n-21) for n>22.
(End)
Conjectures from Colin Barker, Jan 09 2018: (Start)
G.f.: (1 + 2*x + 3*x^2 + 2*x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^10 - x^13) / (1 - 2*x^3 - x^6 - x^9).
a(n) = 2*a(n-3) + a(n-6) + a(n-9) for n>8.
(End)
Extensions
a(11)-a(20) b R. J. Mathar, Apr 16 2016
a(21)-a(40) from Lars Blomberg, Jan 08 2018