This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271494 #21 Mar 08 2021 12:14:20 %S A271494 1,20,112,1088,7936,66560,520192,4210688,33488896,268697600, %T A271494 2146435072,17184063488,137422176256,1099578736640,8795824586752, %U A271494 70369817919488,562945658454016,4503616807239680,36028728299487232,288230651029618688,2305841909702066176,18446748471756062720 %N A271494 Expansion of (1+16*x)/((1+4*x)*(1-8*x)). %C A271494 Sixth moments of the Rudin-Shapiro polynomials. %D A271494 Shalosh B. Ekhad, Explicit Generating Functions, Asymptotics, and More for the First 10 Even Moments of the Rudin-Shapiro Polynomials, Preprint, 2016. %D A271494 Doron Zeilberger, Personal Communication to N. J. A. Sloane, Apr 15 2016. %H A271494 Colin Barker, <a href="/A271494/b271494.txt">Table of n, a(n) for n = 0..1000</a> %H A271494 Christophe Doche, <a href="https://doi.org/10.1090/S0025-5718-05-01736-9">Even moments of generalized Rudin-Shapiro polynomials</a>, Mathematics of computation 74.252 (2005): 1923-1935. %H A271494 Christophe Doche and Laurent Habsieger, <a href="http://web.science.mq.edu.au/~doche/049.pdf">Moments of the Rudin-Shapiro polynomials</a>, Journal of Fourier Analysis and Applications 10.5 (2004): 497-505. %H A271494 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,32). %F A271494 From _Colin Barker_, Apr 17 2016: (Start) %F A271494 a(n) = 2^(1+3*n)-(-4)^n. %F A271494 a(n) = 4*a(n-1) + 32*a(n-2) for n>1. %F A271494 (End) %F A271494 a(n) = 4^n*A014551(n+1). - _R. J. Mathar_, Mar 08 2021 %t A271494 CoefficientList[Series[(1+16x)/((1+4x)(1-8x)),{x,0,30}],x] (* or *) LinearRecurrence[{4,32},{1,20},30] (* _Harvey P. Dale_, May 13 2017 *) %o A271494 (PARI) Vec((1+16*x)/((1+4*x)*(1-8*x)) + O(x^50)) \\ _Colin Barker_, Apr 17 2016 %Y A271494 Cf. A246036, A271495, A271496. %K A271494 nonn,easy %O A271494 0,2 %A A271494 _N. J. A. Sloane_, Apr 15 2016