This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271504 #18 Nov 18 2022 08:32:05 %S A271504 1,1,2,6,2,60,2,210,2,630,2,13860,2,90090,2,90090,2,3063060,2, %T A271504 29099070,2,29099070,2,1338557220,2,3346393050,2,10039179150,2, %U A271504 582272390700,2,9025222055850,2,9025222055850,2,18050444111700,2,333933216066450,2,333933216066450 %N A271504 With a(1) = 1, a(n) is the LCM of all 0 < m < n for which a(m) divides n. %H A271504 Chai Wah Wu, <a href="/A271504/b271504.txt">Table of n, a(n) for n = 1..2309</a> (n = 1..100 from Peter Kagey) %F A271504 a(2n + 1) = 2 for all n > 1. %F A271504 a(n) is even for all n > 2. %t A271504 a = {1}; Do[AppendTo[a, LCM @@ Select[Range[n - 1], Divisible[n, a[[#]]] &]], {n, 2, 40}]; a (* _Michael De Vlieger_, Apr 08 2016 *) %o A271504 (Python 3.9+) %o A271504 from math import lcm %o A271504 from itertools import count, islice %o A271504 from sympy import divisors %o A271504 def A271504_gen(): # generator of terms %o A271504 A271504_dict = {1:1} %o A271504 yield 1 %o A271504 for n in count(2): %o A271504 yield (s:=lcm(*(A271504_dict.get(d,1) for d in divisors(n,generator=True)))) %o A271504 A271504_dict[s] = lcm(A271504_dict.get(s,1),n) %o A271504 A271504_list = list(islice(A271504_gen(),40)) # _Chai Wah Wu_, Nov 17 2022 %Y A271504 Cf. A269347, A271503. %K A271504 nonn %O A271504 1,3 %A A271504 _Peter Kagey_, Apr 08 2016