A271503 a(1) = 1; thereafter a(n) is the product of all 0 < m < n for which a(m) divides n.
1, 1, 2, 6, 2, 120, 2, 210, 2, 1890, 2, 83160, 2, 270270, 2, 4054050, 2, 275675400, 2, 1309458150, 2, 27498621150, 2, 2529873145800, 2, 15811707161250, 2, 426916093353750, 2, 49522266829035000, 2, 383797567925021250, 2, 12665319741525701250, 2
Offset: 1
Keywords
Examples
a(1) = 1 by definition a(2) = 1 because a(1) divides 2. a(3) = 1 * 2 = 2 because a(1) and a(2) divide 3. a(4) = 1 * 2 * 3 = 6 because a(1), a(2), and a(3) divide 4. a(5) = 1 * 2 = 2 because a(1) and a(2) divide 5.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..809 (n = 1..100 from Peter Kagey)
Programs
-
Mathematica
a = {1}; Do[AppendTo[a, Times @@ Flatten@ Position[a, m_ /; Divisible[n, m]]], {n, 2, 35}]; a (* Michael De Vlieger, Apr 09 2016 *)
-
Python
from itertools import count, islice from math import prod from sympy import divisors def A271503_gen(): # generator of terms A271503_dict = {1:1} yield 1 for n in count(2): yield (s:=prod(A271503_dict.get(d,1) for d in divisors(n,generator=True))) A271503_dict[s] = A271503_dict.get(s,1)*n A271503_list = list(islice(A271503_gen(),40)) # Chai Wah Wu, Nov 17 2022
Formula
a(2n + 1) = 2 for all n > 1.
a(n) is even for all n > 2.
Comments