A271524 Decimal expansion of the imaginary part of the Dirichlet function eta(z), at z=i, the imaginary unit.
2, 2, 9, 3, 8, 4, 8, 5, 7, 7, 2, 8, 5, 2, 5, 8, 9, 2, 4, 5, 7, 8, 8, 6, 7, 3, 3, 5, 5, 8, 0, 8, 1, 9, 3, 8, 2, 2, 5, 1, 9, 5, 4, 1, 5, 2, 6, 6, 1, 2, 1, 0, 3, 4, 6, 2, 5, 0, 7, 2, 3, 9, 3, 6, 7, 2, 9, 1, 8, 3, 5, 1, 4, 8, 9, 5, 9, 7, 5, 6, 2, 6, 4, 4, 6, 3, 6, 4, 4, 4, 7, 3, 7, 4, 1, 7, 6, 5, 5, 4, 8, 4, 2, 9, 5
Offset: 0
Examples
0.229384857728525892457886733558081938225195415266121034625072393...
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Dirichlet Eta Function
Crossrefs
Programs
-
Mathematica
First[RealDigits[Im[(1 - 2^(1 - I))*Zeta[I]], 10, 110]] (* Robert Price, Apr 09 2016 *)
-
PARI
\\ The Dirichlet eta function (fails for z=1): direta(z)=(1-2^(1-z))*zeta(z); imag(direta(I))\\ Evaluation
Formula
Equals imag(eta(i)).
Comments