cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271525 Decimal expansion of the real part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit.

This page as a plain text file.
%I A271525 #21 Feb 16 2025 08:33:33
%S A271525 2,3,5,9,2,0,9,4,8,0,5,0,4,4,0,9,2,3,6,3,4,0,7,9,2,6,7,6,0,3,0,5,8,4,
%T A271525 3,4,7,6,0,4,1,9,5,7,3,5,8,9,5,9,1,5,1,2,9,4,8,3,0,4,6,6,0,0,4,5,9,5,
%U A271525 9,5,9,8,4,0,8,0,3,1,6,2,6,5,2,4,3,4,5,7,3,8,7,0,1,0,6,7,3,6,2,1,6,0,3,7,5
%N A271525 Decimal expansion of the real part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit.
%C A271525 The corresponding imaginary part of eta'(i) is in A271526.
%H A271525 Stanislav Sykora, <a href="/A271525/b271525.txt">Table of n, a(n) for n = 0..2000</a>
%H A271525 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>
%F A271525 Equals real(eta'(i)).
%e A271525 0.235920948050440923634079267603058434760419573589591512948304660...
%t A271525 RealDigits[Re[2^(1-I)*Log[2]*Zeta[I] + (1 - 2^(1-I))*Zeta'[I]], 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)
%t A271525 RealDigits[Re[DirichletEta'[I]], 10, 110][[1]] (* _Eric W. Weisstein_, Jan 06 2024 *)
%o A271525 (PARI) \\ Derivative of Dirichlet eta function (fails for z=1):
%o A271525 derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z);
%o A271525 real(derdireta(I)) \\ Evaluation
%Y A271525 Cf. A271523 (real(eta(i))), A271524 (imag(eta(i))), A271526(-imag(eta'(i))).
%K A271525 nonn,cons
%O A271525 0,1
%A A271525 _Stanislav Sykora_, Apr 09 2016