This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271527 #17 Dec 07 2019 12:18:28 %S A271527 2,1001,1000001,1000000001,1000000000001,1000000000000001, %T A271527 1000000000000000001,1000000000000000000001,1000000000000000000000001, %U A271527 1000000000000000000000000001,1000000000000000000000000000001,1000000000000000000000000000000001 %N A271527 a(n) = 1000^n + 1. %C A271527 All terms in this sequence are palindromes (A002113). %C A271527 Also, A062395 written in base 2 (see example). %C A271527 a(n) minus one gives the number of nodes at n-th level of a 1000-ary tree. %C A271527 More generally, the ordinary generating function for sequences of the form k^n + m, is (1 + m - (1 + k*m)*x)/((1 - x)*(1 - k*x)), and the exponential generating function is exp(k*x) + m*exp(x). %H A271527 Ilya Gutkovskiy, <a href="/A271527/a271527.pdf">Examples of the ordinary generating function for the sequences of the form k^n + m</a> %H A271527 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1001,-1000) %F A271527 G.f.: (2 - 1001*x)/((1 - x)*(1 - 1000*x)). %F A271527 E.g.f.: exp(1000*x) + exp(x). %F A271527 a(n) = 1001*a(n-1) - 1000*a(n-2). %F A271527 a(n) = A060365(n) + 1. %F A271527 a(n) = A000533(3n), n>0. %F A271527 a(n) = A007088(A062395(n)). %F A271527 A007953(a(n)) = A007395(n). %F A271527 A000035(a(n)) = A057427(n). %F A271527 Sum_{n>=0} 1/a(n) = 0.501000001999002... %F A271527 Lim_{n->infinity} a(n + 1)/a(n) = 1000. %e A271527 a(n), n>0, is the binary representation of A062395(n) %e A271527 n ------------------------------------------ %e A271527 0 2........................................2 %e A271527 1 1001.....................................9 %e A271527 2 1000001.................................65 %e A271527 3 1000000001.............................513 %e A271527 4 1000000000001.........................4097 %e A271527 5 1000000000000001.....................32769 %e A271527 6 1000000000000000001.................262145 %e A271527 7 1000000000000000000001.............2097153 %e A271527 8 1000000000000000000000001.........16777217 %e A271527 9 1000000000000000000000000001.....134217729 %t A271527 Table[1000^n + 1, {n, 0, 11}] %t A271527 LinearRecurrence[{1001, -1000}, {2, 1001}, 12] %o A271527 (PARI) x='x+O('x^99); Vec((2-1001*x)/((1-x)*(1-1000*x))) \\ _Altug Alkan_, Apr 09 2016 %o A271527 (Python) %o A271527 for n in range(0,10**4):print(1000**n+1) %o A271527 # _Soumil Mandal_, Apr 10 2016 %Y A271527 Cf. A000035, A000533, A007088, A007395, A007953, A057427, A060365, A062395, A152756. %K A271527 nonn,base,easy %O A271527 0,1 %A A271527 _Ilya Gutkovskiy_, Apr 09 2016