This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271549 #18 Apr 10 2016 19:29:49 %S A271549 1399,2157763,13034041,38208649,38502313,41518651,42745111,48154147, %T A271549 49435063,53872447,58981513,75194563,83037247,86139409,101533963, %U A271549 106287019,140778403,144593431,155554237,166083133,166650193,189371671,199865893,201738379,224472877,240133753,271331773 %N A271549 Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime. %C A271549 The exponents of 10 are all prime (2,3,5,7,11,13,17). %e A271549 p = 1399: %e A271549 p+10^2 = 1499 (is prime). %e A271549 p+10^3 = 2399 (is prime). %e A271549 p+10^5 = 101399 (is prime). %e A271549 p+10^7 = 10001399 (is prime). %e A271549 p+10^11 = 100000001399 (is prime). %e A271549 p+10^13 = 10000000001399 (is prime). %e A271549 p+10^17 = 100000000000001399 (is prime). %t A271549 Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] && PrimeQ[# + 10^7] && PrimeQ[# + 10^11] && PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* _Robert Price_, Apr 10 2016 *) %o A271549 (PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ _Altug Alkan_, Apr 10 2016 %Y A271549 Cf. A000040, A002385, A015916, A023203, A271575. %K A271549 nonn %O A271549 1,1 %A A271549 _Emre APARI_, Apr 10 2016 %E A271549 More terms from _Altug Alkan_, Apr 10 2016