A271554 a(n) = G_n(7), where G is the Goodstein function defined in A266201.
7, 30, 259, 3127, 46657, 823543, 16777215, 37665879, 77777775, 150051213, 273624711, 475842915, 794655639, 1281445305, 2004318063, 3051893870, 4537630813, 6604718946, 9431578931, 13238000758, 18291957825, 24917131658, 33501182551, 44504801406, 58471578053, 76038721330
Offset: 0
Examples
G_1(7) = B_2(7) - 1 = B[2](2^2 + 2 + 1) - 1 = 3^3 + 3 + 1 - 1 = 30; G_2(7) = B_3(G_1(7)) - 1 = B[3](3^3 + 3) - 1 = 4^4 + 4 - 1 = 259; G_3(7) = B_4(G_2(7)) - 1 = 5^5 + 3 - 1 = 3127; G_4(7) = B_5(G_3(7)) - 1 = 6^6 + 2 - 1 = 46657; G_5(7) = B_6(G_4(7)) - 1 = 7^7 + 1 - 1 = 823543; G_6(7) = B_7(G_5(7)) - 1 = 8^8 - 1 = 16777215; G_7(7) = B_8(G_6(7)) - 1 = 7*9^7 + 7*9^6 + 7*9^5 + 7*9^4 + 7*9^3 + 7*9^2 + 7*9 + 7 - 1 = 37665879.
Links
- Nicholas Matteo, Table of n, a(n) for n = 0..10000
- R. L. Goodstein, On the Restricted Ordinal Theorem, The Journal of Symbolic Logic 9, no. 2 (1944), 33-41.
- Wikipedia, Goodstein sequence
Crossrefs
Programs
-
PARI
lista(nn) = {print1(a = 7, ", "); for (n=2, nn, pd = Pol(digits(a, n)); q = sum(k=0, poldegree(pd), if (c=polcoeff(pd, k), c*x^subst(Pol(digits(k, n)), x, n+1), 0)); a = subst(q, x, n+1) - 1; print1(a, ", "); ); }