cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271567 Convolution of nonzero triangular numbers (A000217) and nonzero tetradecagonal numbers (A051866).

This page as a plain text file.
%I A271567 #27 Feb 16 2025 08:33:33
%S A271567 1,17,87,287,742,1638,3234,5874,9999,16159,25025,37401,54236,76636,
%T A271567 105876,143412,190893,250173,323323,412643,520674,650210,804310,
%U A271567 986310,1199835,1448811,1737477,2070397,2452472,2888952,3385448,3947944,4582809,5296809,6097119
%N A271567 Convolution of nonzero triangular numbers (A000217) and nonzero tetradecagonal numbers (A051866).
%C A271567 More generally, the ordinary generating function for the convolution of triangular numbers and k-gonal numbers is (1 + (k - 3)*x)/(1 - x)^6.
%H A271567 OEIS Wiki, <a href="http://oeis.org/wiki/Figurate_numbers">Figurate numbers</a>
%H A271567 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularNumber.html">Triangular Number</a>
%H A271567 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1)
%F A271567 O.g.f.: (1 + 11*x)/(1 - x)^6.
%F A271567 E.g.f.: (120 + 1920*x + 3240*x^2 + 1520*x^3 + 245*x^4 + 12*x^5)*exp(x)/120.
%F A271567 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
%F A271567 a(n) = (n + 1)*(n + 2)*(n + 3)*(n + 4)*(12*n + 5)/120.
%F A271567 Sum_{n>=0} 1/a(n) = 20*((15552*(6*log(2) + 3*log(3) + 2*sqrt(3)*log(2 - sqrt(3)) + (2 - sqrt(3))*Pi) - 29449)/531867) = 1.07654258697...
%t A271567 LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 17, 87, 287, 742, 1638}, 40]
%t A271567 Table[(n + 1) (n + 2) (n + 3) (n + 4) (12 n + 5)/120, {n, 0, 40}]
%o A271567 (Magma) /* From definition: */ P:=func<n, k | (n^2*(k-2)-n*(k-4))/2>; /*, where P(n, k) is the n-th k-gonal number, */ [&+[P(n+1-i, 3)*P(i, 14): i in [1..n]]: n in [1..40]]; // _Bruno Berselli_, Apr 18 2016
%o A271567 (Magma) [(n+1)*(n+2)*(n+3)*(n+4)*(12*n+5)/120: n in [0..40]]; // _Bruno Berselli_, Apr 18 2016
%Y A271567 Cf. A000217, A051866.
%Y A271567 Cf. similar sequences of the convolution of triangular numbers and k-gonal numbers: A005585 (k=4), A051836 (k=5), A034263 (k=6), A027800 (k=7), A051843 (k=8), A051877 (k=9), A051878 (k=10), A051879 (k=11), A051880 (k=12), A056118 (k=13), this sequence (k=14).
%K A271567 nonn,easy
%O A271567 0,2
%A A271567 _Ilya Gutkovskiy_, Apr 12 2016
%E A271567 Edited by _Bruno Berselli_, Apr 18 2016