A271585 Numbers k such that (7*10^k + 143)/3 is prime.
1, 2, 3, 6, 7, 10, 11, 25, 26, 32, 122, 123, 126, 161, 292, 320, 743, 1630, 2738, 3178, 4814, 4833, 5030, 7035, 8151, 12554, 13954, 15113, 80490, 96112, 121487, 190683
Offset: 1
Examples
3 is in this sequence because (7*10^3 + 143)/3 = 2381 is prime. Initial terms and associated primes: a(1) = 1, 71; a(2) = 2, 281; a(3) = 3, 2381; a(4) = 6, 2333381; a(5) = 7, 23333381, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 23w81.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(7*10^# + 143)/3] &]
-
PARI
is(n)=ispseudoprime((7*10^n+143)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(31)-a(32) from Robert Price, Mar 30 2018
Comments