This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271591 #34 Feb 07 2018 18:14:46 %S A271591 0,0,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0, %T A271591 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1, %U A271591 1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1 %N A271591 Second most significant bit of the tribonacci number A000073(n). %C A271591 It is conjectured that after the first two 0's, the number of consecutive 0's is only 4 or 5, and the number of consecutive 1's is only 3 or 4 (tested up to n=10^4). The sequence looks quasiperiodic (or with a very long true period if any). %H A271591 Chai Wah Wu, <a href="/A271591/b271591.txt">Table of n, a(n) for n = 4..10000</a> %F A271591 a(n) = floor(A000073(n)/(2^(ceiling(log_2(A000073(n) + 1)) - 2))) - 2. %F A271591 a(n) = A079944(A000073(n)-2). - _Michel Marcus_, Apr 22 2016 %e A271591 (Second MSB in parenthesis) %e A271591 n A000073(n) A000073(n) %e A271591 decimal binary %e A271591 4 2 -> 1(0) %e A271591 5 4 -> 1(0)0 %e A271591 6 7 -> 1(1)1 %e A271591 7 13 -> 1(1)01 %e A271591 8 24 -> 1(1)000 %e A271591 9 44 -> 1(0)1100 %e A271591 10 81 -> 1(0)10001 %e A271591 11 149 -> 1(0)010101 %t A271591 a = LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 120];(* to generate A000073 *) %t A271591 Table[IntegerDigits[a, 2][[i]][[2]], {i, 5, Length[a]}] %o A271591 (Python) %o A271591 A271591_list, a, b, c = [], 0, 1 ,1 %o A271591 for n in range(4,10001): %o A271591 a, b, c = b, c, a+b+c %o A271591 A271591_list.append(int(bin(c)[3])) # _Chai Wah Wu_, Feb 07 2018 %Y A271591 Cf. A000073 (tribonacci numbers), A079944 (2nd msb), A272170. %K A271591 nonn,base %O A271591 4,1 %A A271591 _Andres Cicuttin_, Apr 10 2016