cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271630 Composite numbers n coprime to all number that can be obtained by changing just one digit of n.

Original entry on oeis.org

121, 143, 169, 187, 209, 221, 247, 253, 289, 299, 319, 323, 341, 343, 361, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 529, 533, 551, 553, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703, 713, 731, 737, 767, 779, 781, 793, 799, 803, 817, 841, 851
Offset: 1

Views

Author

Paolo P. Lava, Apr 14 2016

Keywords

Comments

Only numbers ending in 1, 3, 7 and 9.
Apart from the first 10 terms, A078972 is a subset of this sequence.
Subsequence of A038510. - Altug Alkan, Apr 15 2016
Least squareless numbers with increasing number of primes:
143 = 11 * 13;
2431 = 11 * 13 * 17;
45353 = 7 * 11 * 19 * 31;
1062347 = 11 * 13 * 17 * 19 * 23;
30808063 = 11 * 13 * 17 * 19 * 23 * 29;
955049953 = 11 * 13 * 17 * 19 * 23 * 29 * 31;
35336848261 = 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37;
1448810778701 = 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41; etc.

Examples

			343 is coprime to:
43, 143, 243, 443, 543, 643, 743, 843, 943 (where the MSD has been changed);
303, 313, 323, 333, 353, 363, 373, 383, 393 (where the '4' in the middle has been changed);
340, 341, 342, 344, 345, 346, 347, 348, 349 (where the LSD has been changed) .
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,j,k,n,ok;
    for n from 2 to q do if not isprime(n) then ok:=1; j:=0;
    while ok=1 and j<9 do j:=j+1; for k from 1 to ilog10(n)+1 do
    a:=trunc(n/10^k)*10^k+((trunc((n mod 10^k)/10^(k-1))-j) mod 10)*10^(k-1)+(n mod 10^(k-1));
    if gcd(n,a)>1 then ok:=0; break; fi; od; od;
    if ok=1 then print(n); fi; fi; od; end: P(10^5);
  • Mathematica
    Select[Range[10^3], Function[n, And[CompositeQ@ n, AllTrue[Flatten@ Function[w, Map[Function[k, Map[FromDigits[ReplacePart[w, k -> #]] &, Range[0, 9]]], Range@ Length@ w] /. m_ /; m == n -> Nothing]@ IntegerDigits@ n, CoprimeQ[#, n] &]]]] (* Michael De Vlieger, Apr 15 2016 *)