This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271638 #18 Dec 07 2019 12:18:28 %S A271638 1,10,48,170,512,1398,3580,8770,20808,48206,109652,245850,544864, %T A271638 1196134,2605164,5636210,12124280,25952382,55312516,117440650, %U A271638 248512656,524288150,1103102108,2315255970,4848615592,10133438638,21139292340,44023414970,91536490688 %N A271638 The total sum of the cubes of all parts of all compositions of n. %H A271638 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4). %F A271638 G.f.: x*(1 + 4*x + x^2)/((1 - 2*x)*(1 - x))^2. %F A271638 a(n) = (13*n - 36)*2^(n - 1) + 6*n + 18. %e A271638 The two compositions of n=2 are 2 and 1+1. The total sum of the cubes is a(2) = 2^3+1^3+1^3 = 10. %t A271638 Table[(13 n - 36) 2^(n - 1) + 6 n + 18, {n, 29}] (* or *) %t A271638 Rest@ CoefficientList[Series[x (1 + 4 x + x^2)/((1 - 2 x) (1 - x))^2, {x, 0, 29}], x] (* _Michael De Vlieger_, Apr 11 2016 *) %o A271638 (PARI) x='x+O('x^99); Vec(x*(1+4*x+x^2)/((2*x-1)*(1-x))^2) \\ _Altug Alkan_, Apr 11 2016 %o A271638 (Python) for n in range(1,50):print((13*n-36)*2**(n-1)+6*n+18) # _Soumil Mandal_, Apr 11 2016 %Y A271638 Cf. A027992 (sum of squares). %K A271638 nonn,easy %O A271638 1,2 %A A271638 _R. J. Mathar_, Apr 11 2016