cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271638 The total sum of the cubes of all parts of all compositions of n.

This page as a plain text file.
%I A271638 #18 Dec 07 2019 12:18:28
%S A271638 1,10,48,170,512,1398,3580,8770,20808,48206,109652,245850,544864,
%T A271638 1196134,2605164,5636210,12124280,25952382,55312516,117440650,
%U A271638 248512656,524288150,1103102108,2315255970,4848615592,10133438638,21139292340,44023414970,91536490688
%N A271638 The total sum of the cubes of all parts of all compositions of n.
%H A271638 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4).
%F A271638 G.f.: x*(1 + 4*x + x^2)/((1 - 2*x)*(1 - x))^2.
%F A271638 a(n) = (13*n - 36)*2^(n - 1) + 6*n + 18.
%e A271638 The two compositions of n=2 are 2 and 1+1. The total sum of the cubes is a(2) = 2^3+1^3+1^3 = 10.
%t A271638 Table[(13 n - 36) 2^(n - 1) + 6 n + 18, {n, 29}] (* or *)
%t A271638 Rest@ CoefficientList[Series[x (1 + 4 x + x^2)/((1 - 2 x) (1 - x))^2, {x, 0, 29}], x] (* _Michael De Vlieger_, Apr 11 2016 *)
%o A271638 (PARI) x='x+O('x^99); Vec(x*(1+4*x+x^2)/((2*x-1)*(1-x))^2) \\ _Altug Alkan_, Apr 11 2016
%o A271638 (Python) for n in range(1,50):print((13*n-36)*2**(n-1)+6*n+18) # _Soumil Mandal_, Apr 11 2016
%Y A271638 Cf. A027992 (sum of squares).
%K A271638 nonn,easy
%O A271638 1,2
%A A271638 _R. J. Mathar_, Apr 11 2016