A271640 Numbers k such that 3*10^k + 73 is prime.
1, 2, 5, 6, 13, 37, 50, 55, 71, 89, 217, 352, 355, 398, 449, 668, 742, 870, 1360, 1579, 2848, 3774, 5039, 5051, 6134, 6824, 7255, 12586, 17106, 27502, 30581, 33817, 97399, 170800, 172219, 177872
Offset: 1
Examples
5 is in this sequence because 3*10^5 + 73 = 300073 is prime. Initial terms and associated primes: a(1) = 1, 103; a(2) = 2, 373; a(3) = 5, 300073; a(4) = 6, 3000073; a(5) = 13, 30000000000073, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 30w73.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[3*10^# + 73] &]
-
PARI
is(n)=ispseudoprime(3*10^n + 73) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(34)-a(36) from Robert Price, Aug 10 2018
Comments