A271645 Numbers k such that (23*10^k + 91)/3 is prime.
1, 2, 4, 15, 16, 19, 20, 26, 38, 47, 52, 75, 122, 191, 246, 257, 294, 305, 374, 592, 682, 729, 1092, 2053, 2997, 4065, 13936, 17214, 19059, 37433, 142105, 214633, 242909
Offset: 1
Examples
4 is in this sequence because (23*10^4 + 91)/3 = 76697 is prime. Initial terms and associated primes: a(1) = 1, 107; a(2) = 2, 797; a(3) = 4, 76697; a(4) = 15, 7666666666666697; a(5) = 16, 76666666666666697, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 76w97.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[(23*10^# + 91)/3] &]
-
PARI
is(n)=ispseudoprime((23*10^n + 91)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(31) from Robert Price, Aug 11 2019
a(32)-a(33) from Robert Price, May 31 2023
Comments