This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271647 #16 Apr 11 2016 22:17:31 %S A271647 1,2,4,3,6,5,9,8,7,12,11,10,16,15,14,13,20,19,18,17,25,24,23,22,21,30, %T A271647 29,28,27,26,36,35,34,33,32,31,42,41,40,39,38,37,49,48,47,46,45,44,43, %U A271647 56,55,54,53,52,51,50,64,63,62,61,60,59,58,57 %N A271647 Irregular triangle read by rows: the natural numbers from right to left. %C A271647 A permutation of the natural numbers. Mentioned as d(n) in A269837. %C A271647 Difference table: %C A271647 1, 2, 4, 3, 6, 5, 9, 8, 7, 12, 11, 10, 16, 15, 14, 13, 20, 19, 18, ... %C A271647 1, 2, -1, 3, -1, 4, -1, -1, 5, -1, -1, 6, -1, -1, -1, 7, -1, -1, -1, ... %C A271647 1, -3, 4, -4, 5, -5, 0, 6, -6, 0, 7, -7, 0, 0, 8, -8, 0, 0, 9, ... %C A271647 etc. %F A271647 With offset=0, a(n) = A271584(n) + A269837(n) %F A271647 Empirical g.f. as triangle: (1-y*x^3+y^2*x^4-2*y*x^4-y^2*x^5+y*x^5+y^2*x^7)*x/((1+x)*(1-x)^3*(1-y*x^2)^3). - _Robert Israel_, Apr 11 2016 %e A271647 Irregular triangle: %e A271647 1, %e A271647 2, %e A271647 4, 3, %e A271647 6, 5, %e A271647 9, 8, 7, %e A271647 12, 11, 10, %e A271647 16, 15, 14, 13, %e A271647 20, 19, 18, 17, %e A271647 25, 24, 23, 22, 21, %e A271647 30, 29, 28, 27, 26, %e A271647 etc. %p A271647 count:= 0: %p A271647 for r from 1 to 20 do %p A271647 d:= ceil(r/2); %p A271647 for i from 0 to d-1 do A[r,i]:= count+ d-i od; %p A271647 count:= count+d; %p A271647 od: %p A271647 seq(seq(A[r,i],i=0..ceil(r/2)-1),r=1..20); # _Robert Israel_, Apr 11 2016 %t A271647 Table[Reverse@ Range[Floor[n/2]] + Floor[(n - 1)^2/4], {n, 16}] // Flatten (* _Michael De Vlieger_, Apr 11 2016 *) %Y A271647 Cf. A000027, A002620, A024206, A033638, A075356, A235355, A269837, A271584 %K A271647 nonn,tabf %O A271647 1,2 %A A271647 _Paul Curtz_, Apr 11 2016