cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271663 Convolution of nonzero squares (A000290) with nonzero pentagonal numbers (A000326).

This page as a plain text file.
%I A271663 #40 Feb 16 2025 08:33:33
%S A271663 1,9,41,131,336,742,1470,2682,4587,7447,11583,17381,25298,35868,49708,
%T A271663 67524,90117,118389,153349,196119,247940,310178,384330,472030,575055,
%U A271663 695331,834939,996121,1181286,1393016,1634072,1907400,2216137,2563617,2953377,3389163,3874936
%N A271663 Convolution of nonzero squares (A000290) with nonzero pentagonal numbers (A000326).
%C A271663 More generally, the ordinary generating function for the convolution of nonzero h-gonal numbers and k-gonal numbers is (1 + (h - 3)*x)*(1 + (k - 3)*x)/(1 - x)^6.
%H A271663 G. C. Greubel, <a href="/A271663/b271663.txt">Table of n, a(n) for n = 0..1000</a>
%H A271663 OEIS Wiki, <a href="http://oeis.org/wiki/Figurate_numbers">Figurate numbers</a>
%H A271663 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquareNumber.html">Square Number</a>
%H A271663 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a>
%H A271663 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1)
%F A271663 O.g.f.: (1 + x)*(1 + 2*x)/(1 - x)^6.
%F A271663 E.g.f.: (120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*exp(x)/120.
%F A271663 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
%F A271663 a(n) = (n + 1)*(n + 2)*(n + 3)*(6*n^2 + 19*n + 20)/120.
%F A271663 Sum_{n>=0} 1/a(n) = 1.149165731...
%t A271663 LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 9, 41, 131, 336, 742}, 40]
%t A271663 Table[(n + 1) (n + 2) (n + 3) (6 n^2 + 19 n + 20)/120, {n, 0, 40}]
%t A271663 With[{nmax = 50}, CoefficientList[Series[(120 + 960*x + 1440*x^2 + 680*x^3 + 115*x^4 + 6*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jun 07 2017 *)
%o A271663 (PARI) vector(40, n, n--; (n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120) \\ _Altug Alkan_, Apr 12 2016
%o A271663 (Magma) /* From definition: */ P:=func<n,k | (n^2*(k-2)-n*(k-4))/2>; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,4)*P(i,5): i in [1..n]]: n in [1..40]]; // _Bruno Berselli_, Apr 12 2016
%o A271663 (Magma) [(n+1)*(n+2)*(n+3)*(6*n^2+19*n+20)/120: n in [0..40]]; // _Bruno Berselli_, Apr 12 2016
%Y A271663 Cf. A000290, A000326.
%Y A271663 Cf. A005585: convolution of nonzero squares with nonzero triangular numbers.
%Y A271663 Cf. A033455: convolution of nonzero squares with themselves.
%Y A271663 Cf. A051836 (after 0): convolution of nonzero triangular numbers with nonzero pentagonal numbers.
%K A271663 nonn,easy
%O A271663 0,2
%A A271663 _Ilya Gutkovskiy_, Apr 12 2016
%E A271663 Edited by _Bruno Berselli_, Apr 12 2016