This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271667 #19 Sep 08 2022 08:46:16 %S A271667 3,5,13,41,43,61,71,73,103,113,181,223,241,269,271,283,379,433,479, %T A271667 491,521,523,593,619,631,659,719,839,929,941,1009,1039,1069,1193,1249, %U A271667 1289,1319,1429,1433,1471,1489,1511,1553,1601,1613,1693,1699,1723,1753,1861 %N A271667 Primes p such that 6*p^2+6*p-1 is prime. %H A271667 Vincenzo Librandi, <a href="/A271667/b271667.txt">Table of n, a(n) for n = 1..1000</a> %e A271667 3 is a term because 3 is prime and 6*3^2+6*3-1 is 71 which is prime. 13 is a term because 13 is prime and 6*13^2+6*13-1 is 1091 which is prime. - _Soumil Mandal_, Apr 14 2016 %t A271667 Select[Prime[Range[300]], PrimeQ[6 #^2 + 6 # - 1] &] %o A271667 (Magma) [p: p in PrimesUpTo(2000) | IsPrime(6*p^2+6*p-1)]; %o A271667 (PARI) lista(nn) = forprime(p=2, nn, if(isprime(6*p^2+6*p-1), print1(p, ", "))); \\ _Altug Alkan_, Apr 12 2016 %o A271667 (Python) %o A271667 from gmpy2 import is_prime %o A271667 for p in range(3,10**5,2): %o A271667 if(not is_prime(p)):continue %o A271667 elif(is_prime(6*p**2+6*p-1)):print(p) %o A271667 # _Soumil Mandal_, Apr 14 2016 %Y A271667 Cf. A171139, A171831, A171832, A261810, A271666. %K A271667 nonn,easy %O A271667 1,1 %A A271667 _Vincenzo Librandi_, Apr 12 2016