cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271704 Triangle read by rows, T(n,k) = Sum_{j=0..n} (-1)^(n-j)*C(-j,-n)*L(j,k), L the unsigned Lah numbers A271703, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 11, 8, 1, 0, 49, 57, 15, 1, 0, 261, 424, 174, 24, 1, 0, 1631, 3425, 1930, 410, 35, 1, 0, 11743, 30336, 21855, 6320, 825, 48, 1, 0, 95901, 294553, 259161, 95235, 16835, 1491, 63, 1, 0, 876809, 3123632, 3251500, 1452976, 325150, 38864, 2492, 80, 1
Offset: 0

Views

Author

Peter Luschny, Apr 14 2016

Keywords

Examples

			Triangle starts:
  [1]
  [0, 1]
  [0, 3,     1]
  [0, 11,    8,     1]
  [0, 49,    57,    15,    1]
  [0, 261,   424,   174,   24,   1]
  [0, 1631,  3425,  1930,  410,  35,  1]
  [0, 11743, 30336, 21855, 6320, 825, 48, 1]
		

Crossrefs

A001339 (col. 1), A005563 (diag. n,n-1).

Programs

  • Maple
    L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)):
    T := (n,k) -> add(L(j,k)*binomial(-j,-n)*(-1)^(n-j), j=0..n):
    seq(seq(T(n,k), k=0..n), n=0..9);

Formula

From Natalia L. Skirrow, Jun 12 2025: (Start)
Definition can also be written Sum_{j=0..n} C(n-1, j-1)*L(j, k), where C(n, -1) = (1 if n = -1 else 0) over integer n.
T(n, k) = C(n-1, k-1)*A143409(n-k, k) = k*(k+1)*A271705(n+1, k+1)/(n*(n+1)) for n > 0.
E.g.f. for sequence b(n, k) = T(n+1, k+1): F/(1-x)^2, where F = exp(x + y*x/(1-x)) is e.g.f. of A271705.
E.g.f. for kth column of b: exp(x)*x^(k-1)/(1-x)^(k+1)/(k-1)!. (These cannot be integrated with x to give e.g.f.s for T(n, k) using standard functions.)
T(n, k) = Sum_{i=0..n-k} (n-1)_i*(i+1)*A271705(n-1-i, k-1), where (n)_i = n!/(n-i)! is the falling factorial. (End)