A271706 Triangle read by rows: T(n, k) = Sum_{j=0..n} C(-j-1, -n-1)*L(j, k), L the unsigned Lah numbers A271703, for n >= 0 and 0 <= k <= n.
1, -1, 1, 1, 0, 1, -1, 3, 3, 1, 1, 8, 18, 8, 1, -1, 45, 110, 70, 15, 1, 1, 264, 795, 640, 195, 24, 1, -1, 1855, 6489, 6335, 2485, 441, 35, 1, 1, 14832, 59332, 67984, 32550, 7504, 868, 48, 1, -1, 133497, 600732, 789852, 445914, 126126, 19068, 1548, 63, 1
Offset: 0
Examples
Triangle starts: [ 1] [-1, 1] [ 1, 0, 1] [-1, 3, 3, 1] [ 1, 8, 18, 8, 1] [-1, 45, 110, 70, 15, 1] [ 1, 264, 795, 640, 195, 24, 1] [-1, 1855, 6489, 6335, 2485, 441, 35, 1]
Crossrefs
Programs
-
Maple
L := (n, k) -> `if`(k<0 or k>n, 0, (n-k)!*binomial(n, n-k)*binomial(n-1, n-k)): T := (n, k) -> add(L(j, k)*binomial(-j-1,-n-1), j=0..n): seq(seq(T(n, k), k=0..n), n=0..9); # Or: T := (n, k) -> (-1)^(n-k)*binomial(n, k)*hypergeom([k-n, k], [], 1): for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Jun 25 2025
Formula
T(n, k) = (-1)^(k-n)*binomial(n, k)*hypergeom([k-n, k], [], 1). (After a formula of Natalia L. Skirrow in A271705.) - Peter Luschny, Jun 25 2025