This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271707 #10 Mar 13 2020 16:57:31 %S A271707 1,0,1,0,2,2,0,3,2,6,0,4,11,4,24,0,5,10,14,12,120,0,6,31,62,34,48,720, %T A271707 0,7,28,60,84,120,240,5040,0,8,66,102,490,228,552,1440,40320,0,9,60, %U A271707 299,292,708,912,3120,10080,362880,0,10,120,282,722,4396,2136,4752,20880,80640,3628800 %N A271707 Triangle read by rows, T(n,k) = Sum_{p in P(n,k)} Aut(p) where P(n,k) are the partitions of n with length k and Aut(p) = 1^j[1]*j[1]!*...*n^j[n]*j[n]! where j[m] is the number of parts in the partition p equal to m; for n>=0 and 0<=k<=n. %C A271707 S(n,k) = Sum_{p in P(n,k)} n!/Aut(p) are the Stirling cycle numbers A132393. %e A271707 Triangle starts: %e A271707 [1] %e A271707 [0, 1] %e A271707 [0, 2, 2] %e A271707 [0, 3, 2, 6] %e A271707 [0, 4, 11, 4, 24] %e A271707 [0, 5, 10, 14, 12, 120] %e A271707 [0, 6, 31, 62, 34, 48, 720] %e A271707 [0, 7, 28, 60, 84, 120, 240, 5040] %o A271707 (Sage) %o A271707 def A271707(n,k): %o A271707 P = Partitions(n, length=k) %o A271707 return sum(p.aut() for p in P) %o A271707 for n in (0..10): print([A271707(n,k) for k in (0..n)]) %Y A271707 Cf. A110143 (row sums), A132393, A271708. %K A271707 nonn,tabl %O A271707 0,5 %A A271707 _Peter Luschny_, Apr 17 2016