cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271708 Triangle read by rows, T(n,k) = Sum_{p in P(n,k)} Aut(p) where P(n,k) are the partitions of n with largest part k and Aut(p) = 1^j[1]*j[1]!*...*n^j[n]*j[n]! where j[m] is the number of parts in the partition p equal to m; for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 6, 2, 3, 0, 24, 12, 3, 4, 0, 120, 20, 12, 4, 5, 0, 720, 112, 42, 16, 5, 6, 0, 5040, 336, 126, 44, 20, 6, 7, 0, 40320, 2112, 492, 188, 55, 24, 7, 8, 0, 362880, 11712, 2802, 640, 215, 66, 28, 8, 9, 0, 3628800, 92160, 16938, 3624, 830, 258, 77, 32, 9, 10
Offset: 0

Views

Author

Peter Luschny, Apr 17 2016

Keywords

Comments

Also T(n,k) = Sum_{p in P(n,k)} Cen(p) where Cen(p) is the size of the centralizer of any permutation of cycle type p.

Examples

			Triangle starts:
[1]
[0, 1]
[0, 2, 2]
[0, 6, 2, 3]
[0, 24, 12, 3, 4]
[0, 120, 20, 12, 4, 5]
[0, 720, 112, 42, 16, 5, 6]
[0, 5040, 336, 126, 44, 20, 6, 7]
[0, 40320, 2112, 492, 188, 55, 24, 7, 8]
		

Crossrefs

Cf. A110143 (row sums), A126074.

Programs

  • Sage
    def A271708(n,k):
        P = Partitions(n, max_part=k, inner=[k])
        return sum([p.aut() for p in P])
    for n in (0..9): print([A271708(n,k) for k in (0..n)])