cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271710 Table T(n,k) = 2^n XOR 2^k read by antidiagonals, where XOR is the binary exclusive or operator.

This page as a plain text file.
%I A271710 #22 Apr 15 2016 13:46:21
%S A271710 0,3,3,5,0,5,9,6,6,9,17,10,0,10,17,33,18,12,12,18,33,65,34,20,0,20,34,
%T A271710 65,129,66,36,24,24,36,66,129,257,130,68,40,0,40,68,130,257,513,258,
%U A271710 132,72,48,48,72,132,258,513,1025,514,260,136,80,0,80,136,260
%N A271710 Table T(n,k) = 2^n XOR 2^k read by antidiagonals, where XOR is the binary exclusive or operator.
%C A271710 n > 1 is in this sequence if and only if it is in A018900.
%H A271710 Peter Kagey, <a href="/A271710/b271710.txt">Table of n, a(n) for n = 0..10000</a>
%F A271710 T(n, k) = 0 if n = k.
%F A271710 T(n, k) = A271709(n, k) if n != k.
%e A271710 a(0) = T(0, 0) = 2^0 XOR 2^0 = 0.
%e A271710 a(1) = T(1, 0) = 2^1 XOR 2^0 = 3.
%e A271710    0,   3,   5,   9,  17,  33,  65, 129, 257, 513,1025,
%e A271710    3,   0,   6,  10,  18,  34,  66, 130, 258, 514,1026,
%e A271710    5,   6,   0,  12,  20,  36,  68, 132, 260, 516,1028,
%e A271710    9,  10,  12,   0,  24,  40,  72, 136, 264, 520,1032,
%e A271710   17,  18,  20,  24,   0,  48,  80, 144, 272, 528,1040,
%e A271710   33,  34,  36,  40,  48,   0,  96, 160, 288, 544,1056,
%e A271710   65,  66,  68,  72,  80,  96,   0, 192, 320, 576,1088,
%e A271710  129, 130, 132, 136, 144, 160, 192,   0, 384, 640,1152,
%e A271710  257, 258, 260, 264, 272, 288, 320, 384,   0, 768,1280,
%e A271710  513, 514, 516, 520, 528, 544, 576, 640, 768,   0,1536,
%e A271710 1025,1026,1028,1032,1040,1056,1088,1152,1280,1536,   0,
%p A271710 read("transforms") ;
%p A271710 A271710 := proc(n,k)
%p A271710     XORnos(2^n,2^k) ;
%p A271710 end proc: # _R. J. Mathar_, Apr 15 2016
%t A271710 Table[BitXor[2^(n - k), 2^k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 12 2016 *)
%o A271710 (PARI) T(n, k) = bitxor(2^n, 2^k);
%o A271710 matrix(10, 10, n, k, n--; k--; T(n,k)) \\ _Michel Marcus_, Apr 12 2016
%Y A271710 Cf. A271709.
%K A271710 nonn,tabl,easy
%O A271710 0,2
%A A271710 _Peter Kagey_, Apr 12 2016