cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271714 Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 such that (10*w+5*x)^2 + (12*y+36*z)^2 is a square, where w is a positive integer and x,y,z are nonnegative integers.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 3, 1, 2, 1, 2, 3, 1, 4, 4, 2, 2, 1, 3, 3, 5, 2, 2, 5, 2, 1, 2, 3, 3, 3, 2, 3, 2, 3, 4, 4, 2, 3, 9, 2, 3, 1, 1, 6, 2, 3, 4, 6, 4, 1, 2, 5, 3, 3, 4, 3, 5, 1, 4, 5, 1, 3, 6, 6, 1, 3, 4, 5, 12, 2, 4, 6, 2, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 12 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 7, 9, 19, 49, 133, 589, 2^k, 2^k*3, 4^k*q (k = 0,1,2,... and q = 14, 67, 71, 199).
(ii) If P(y,z) is one of 2y-3z, 2y-8z and 4y-6z, then any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers such that (w-x)^2 + P(y,z)^2 is a square.
(iii) For each triple (a,b,c) = (1,4,4), (1,12,12), (2,4,8), (2,6,6), (2,12,12), (3,4,4), (3,4,8), (3,8,8), (3,12,12), (3,12,36), (5,4,4), (5,4,8), (5,8,16), (5,36,36), (6,4,4), (7,12,12), (7,20,20), (7,24,24), (9,4,4), (9,12,12),(9,36,36), (11,12,12), (13,4,4), (15,12,12), (16,12,12), (21,20,20), (21,24,24), (23,12,12), any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers such that (w+a*x)^2 + (b*y-c*z)^2 is a square.
See also A271510, A271513, A271518, A271644, A271665, A271721 and A271724 for other conjectures refining Lagrange's four-square theorem.

Examples

			a(2) = 1 since 2 = 1^2 + 1^2 + 0^2 + 0^2 with (10*1+5*1)^2 + (12*0+36*0)^2 = 15^2 + 0^2 = 15^2.
a(3) = 1 since 3 = 1^2 + 1^2 + 0^2 + 1^2 with (10*1+5*1)^2 + (12*0+36*1)^2 = 15^2 + 36^2 = 39^2.
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with (10*2+5*0)^2 + (12*0+36*0)^2 = 20^2 + 0^2 = 20^2.
a(6) = 1 since 6 = 2^2 + 0^2 + 1^2 + 1^2 with (10*2+5*0)^2 + (12*1+36*1)^2 = 20^2 + 48^2 = 52^2.
a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with (10*1+5*2)^2 + (12*1+36*1)^2 = 20^2 + 48^2 = 52^2.
a(9) = 1 since 9 = 3^2 + 0^2 + 0^2 + 0^2 with (10*3+5*0)^2 + (12*0+36*0)^2 = 30^2 + 0^2 = 30^2.
a(19) = 1 since 19 = 3^2 + 0^2 + 3^2 + 1^2 with (10*3+5*0)^2 + (12*3+36*1)^2 = 30^2 + 72^2 = 78^2.
a(49) = 1 since 49 = 7^2 + 0^2 + 0^2 + 0^2 with (10*7+5*0)^2 + (12*0+36*0)^2 = 70^2 + 0^2 = 70^2.
a(133) = 1 since 133 = 9^2 + 0^2 + 6^2 + 4^2 with (10*9+5*0)^2 + (12*6+36*4)^2 = 90^2 + 216^2 = 234^2.
a(589) = 1 since 589 = 17^2 + 10^2 + 2^2 + 14^2 with (10*17+5*10)^2 + (12*2+36*14)^2 = 220^2 + 528^2 = 572^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(10*Sqrt[n-x^2-y^2-z^2]+5x)^2+(12y+36z)^2],r=r+1],{x,0,Sqrt[n-1]},{y,0,Sqrt[n-1-x^2]},{z,0,Sqrt[n-1-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]