This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271715 #11 May 11 2024 18:24:20 %S A271715 1,4,55,1540,67375,4239235,383563180,51925673800,10652498631775, %T A271715 3139051466175625,1228555090548911125,602267334323068414000, %U A271715 357161594247065690582500,250870551734754490461422500,205672479804595549379158525000,194557626586812183102927448930000 %N A271715 Number of set partitions of [3n] with minimal block length multiplicity equal to n. %H A271715 Alois P. Heinz, <a href="/A271715/b271715.txt">Table of n, a(n) for n = 0..200</a> %F A271715 a(n) = A271424(3n,n). %F A271715 Recursion: see Maple program. %F A271715 For n>0, a(n) = (3^n + n!)*(3*n)! / (6^n * (n!)^2). - _Vaclav Kotesovec_, Apr 16 2016 %F A271715 a(n) = A372722(3n,n). - _Alois P. Heinz_, May 11 2024 %p A271715 a:= proc(n) option remember; `if`(n<5, %p A271715 [1, 4, 55, 1540, 67375][n+1], ((2*(3*n-2))* %p A271715 (3*n-1)*(n^2-n-9)*a(n-1) -(3*(n-3))*(3*n-1)* %p A271715 (3*n-4)*(3*n-2)*(3*n-5)*a(n-2))/(4*n*(n-4))) %p A271715 end: %p A271715 seq(a(n), n=0..20); %t A271715 multinomial[n_, k_List] := n!/Times @@ (k!); %t A271715 b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i&, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]] // Union}]]]; %t A271715 a[n_] := If[n==0, 1, b[3n, 3n, n] - b[3n, 3n, n+1]]; %t A271715 a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 11 2020, after _Alois P. Heinz_ in A271424 *) %Y A271715 Cf. A271424, A372722. %K A271715 nonn %O A271715 0,2 %A A271715 _Alois P. Heinz_, Apr 12 2016