cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271721 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x >= y >= z >= 0, x > 0 and w >= z such that (x-y)*(w-z) is a square.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 2, 1, 2, 4, 5, 3, 3, 3, 2, 1, 2, 3, 5, 4, 5, 2, 2, 4, 2, 3, 5, 1, 4, 4, 5, 3, 3, 4, 5, 4, 3, 4, 2, 2, 3, 3, 5, 3, 8, 4, 6, 3, 2, 4, 6, 3, 3, 4, 4, 5, 2, 3, 7, 6, 7, 2, 3, 2, 5, 6, 8, 3, 7, 3, 2, 2, 3, 6, 11, 5, 8, 5, 8, 4, 2, 3, 8, 4, 5, 5, 3, 1, 2, 9, 10, 5, 8
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 12 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 5, 11, 15, 23, 35, 95, 4^k*190 (k = 0,1,2,...).
(ii) For each k = 4, 5, 6, 7, 8, 11, 12, 13, 15, 17, 18, 20, 22, 25, 27, 29, 33, 37, 38, 41, 50, 61, any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that (x-y)*(w-k*z) is a square.
(iii) For each triple (a,b,c) = (3,1,1), (1,2,1), (2,2,1), (3,2,1), (2,2,2), (6,2,1), (1,3,1), (3,3,1), (15,3,1), (1,4,1), (2,4,1), (1,5,1), (3,5,1), (5,5,1), (1,5,2), (1,6,1), (2,6,1), (3,6,1), (15,6,1), (1,7,1), (5,7,1), (1,8,1), (1,8,5), (3,9,1), (1,10,1), (1,12,1), (1,13,1), (3,13,1), (1,14,1), (1,15,1), (1,15,2), (6,16,1), (2,18,1), (3,18,1), (1,20,2), (1,21,1), (3,21,1), (1,23,1), (1,24,1), (1,27,1), (3,27,1), (1,34,1), (1,45,1), (3,45,1), (3,48,1), (1,55,1), (1,60,1), (5,60,1), any natural number can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that a*(x+b*y)*(w-c*z) is a square.
This is stronger than Lagrange's four-square theorem. Note that for k = 2 or 3, any natural number n can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers and (x-y)*(w-k*z) = 0, for, if n cannot be represented by x^2 + y^2 + 2*z^2 then it has the form 4^k*(16*m+14) (k,m = 0,1,2,...) and hence it can be represented by x^2 + y^2 + (k^2+1)*z^2. It is known that natural numbers not represented by x^2 + y^2 + 5*z^2 have the form 4^k*(8*m+3), and that positive even numbers not represented by x^2 + y^2 + 10*z^2 have the form 4^k*(16*m+6) (as conjectured by S. Ramanujan and proved by L. E. Dickson).
See also A271510, A271513, A271518, A271644, A271714 and A271724 for other conjectures refining Lagrange's theorem.

Examples

			a(3) = 1 since 3 = 1^2 + 1^2 + 0^2 + 0^2 with 1 = 1 > 0 = 0 and (1-1)*(0-0) = 0^2.
a(5) = 1 since 5 = 2^2 + 1^2 + 0^2 + 0^2 with 2 > 1 > 0 = 0 and (2-1)*(0-0) = 0^2.
a(11) = 1 since 11 = 1^2 + 1^2 + 0^2 + 3^2 with 1 = 1 > 0 < 3 and (1-1)*(3-0) = 0^2.
a(14) = 2 since 14 = 3^2 + 1^2 + 0^2 + 2^2 with 3 > 1 > 0 < 2 and (3-1)*(2-0) = 2^2, and also 14 = 3^2 + 2^2 + 0^2 + 1^2 with 3 > 2 > 0 < 1 and (3-2)*(1-0) = 1^2.
a(15) = 1 since 15 = 3^2 + 2^2 + 1^2 + 1^2 with 3 > 2 > 1 = 1 and (3-2)*(1-1) = 0^2.
a(23) = 1 since 23 = 3^2 + 3^2 + 1^2 + 2^2 with 3 = 3 > 1 < 2 and (3-3)*(2-1) = 0^2.
a(35) = 1 since 35 = 3^2 + 3^2 + 1^2 + 4^2 with 3 = 3 > 1 < 4 and (3-3)*(4-1) = 0^2.
a(95) = 1 since 95 = 5^2 + 5^2 + 3^2 + 6^2 with 5 = 5 > 3 < 6 and (5-5)*(6-3) = 0^2.
a(190) = 1 since 190 = 13^2 + 4^2 + 1^2 + 2^2 with 13 > 4 > 1 < 2 and (13-4)*(2-1) = 3^2.
		

References

  • L. E. Dickson, Integers represented by positive ternary quadratic forms, Bull. Amer. Math. Soc. 33(1927), 63-70.
  • L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago, 1939, pp. 112-113.

Crossrefs

Programs

  • Mathematica
      SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(Sqrt[n-x^2-y^2-z^2]-z)*(x-y)],r=r+1],{z,0,Sqrt[n/4]},{y,z,Sqrt[(n-z^2)/2]},{x,Max[1,y],Sqrt[(n-y^2-2z^2)]}];Print[n," ",r];Continue,{n,1,100}]