This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271725 #14 Jun 16 2017 02:54:09 %S A271725 3,7,17,19,13,23,37,41,307,359,401,419,13807,14159,14401,14519,41413, %T A271725 42023,42437,42641,6317683,6325223,6330257,6332771,22958473,22972847, %U A271725 22982437,22987229,39081253,39100007,39112517,39118769,110617807,110649359,110670401,110680919 %N A271725 T(n,k) is an array read by rows, with n > 0 and k=1..4, where row n gives four prime numbers in increasing order with locations in right angles of each concentric square drawn on a distorted version of the Ulam spiral. %C A271725 See the illustration for more information. %C A271725 Conjecture: there is an infinity of concentric squares having a prime number in each right angle. The number 5 is the center of all the squares. %C A271725 It seems that the drawing of an infinite number of concentric squares having a prime number in each corner is impossible in an Ulam spiral. But with a slight distortion of this space, the problem becomes possible. %C A271725 The illustration (see the link) shows the new version of a spiral with two remarkable orthogonal diagonals containing four classes of prime numbers given by the sequences A125202, A121326, A028871 and A073337 supported by four line segments. These intersect at a single point represented by the prime number 5. %C A271725 The sequence of the corresponding length of the sides is {s(k)} = {2, 4, 18, 118, 204, 2514, 4792, 6252, 10518, 14032, 16752, 17598, ...} %C A271725 The primes are defined by the polynomials: [4*m^2-10*m+7, (2*m-1)^2-2, 4*m^2+1, 4*(m+1)^2-6*(m+1)+1]. The sequence of the corresponding m is {b(k)} = {2, 3, 10, 60, 103, 1258, 2397, 3127, 5260, 7017, 8377, 8800, 10375, 11518, 11523, 12498, 15415, 15888, ...} with the relation b(k) = 1 + s(k)/2. %C A271725 The array begins: %C A271725 3, 7, 17, 19; %C A271725 13, 23, 37, 41; %C A271725 307, 359, 401, 419; %C A271725 13807, 14159, 14401, 14519; %C A271725 41413, 42023, 42437, 42641; %C A271725 ... %C A271725 Construction of the spiral (see the illustration in the link): %C A271725 . . . . . . . . . . . . %C A271725 . 42 41 40 39 38 37 . . . %C A271725 | %C A271725 . 43 20 19 18 17 36 35 . . %C A271725 | %C A271725 . . 21 6 5 16 15 34 . . %C A271725 | %C A271725 . . 22 7 4 3 14 33 . . %C A271725 . . 23 8 1 2 13 32 . . %C A271725 . . 24 9 10 11 12 31 . . %C A271725 . . 25 26 27 28 29 30 . . %C A271725 . . . . . . . . . . . %C A271725 The first squares of center 5 having a prime number in each vertex are: %C A271725 19 18 17 41 40 39 38 37 %C A271725 6 5 16 20 19 18 17 36 %C A271725 7 4 3 21 6 5 16 15 . . . . %C A271725 22 7 4 3 14 %C A271725 23 8 1 2 13 %H A271725 Michel Lagneau, <a href="/A271725/a271725.pdf">Illustration</a> %p A271725 for n from 1 to 10000 do : %p A271725 x1:=4*n^2-10*n+7:x2:=(2*n-1)^2-2: %p A271725 x3:=4*(n+1)^2-6*(n+1)+1:x4:=4*n^2+1: %p A271725 if isprime(x1) and isprime(x2) and isprime(x3) and isprime(x4) %p A271725 then %p A271725 printf("%d %d %d %d %d \n",n,x1,x2,x4,x3): %p A271725 else %p A271725 fi: %p A271725 od: %Y A271725 Cf. A028871, A073337, A121326, A125202, A200975. %K A271725 nonn %O A271725 1,1 %A A271725 _Michel Lagneau_, Apr 13 2016