This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A271737 #8 May 08 2018 06:23:29 %S A271737 1,0,45,165,1980,14157,123123,1042470,11229075,117721175,1085614101, %T A271737 11354532696,132028149240,1440550986525,15693895739115, %U A271737 183700174158435,2200557929261230,26295830857171150,323510486572841425,4085513198322259275,52716487743732737925 %N A271737 Number of set partitions of [n] with maximal block length multiplicity equal to eight. %C A271737 At least one block length occurs exactly 8 times, and all block lengths occur at most 8 times. %H A271737 Alois P. Heinz, <a href="/A271737/b271737.txt">Table of n, a(n) for n = 8..588</a> %H A271737 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %p A271737 with(combinat): %p A271737 b:= proc(n, i, k) option remember; `if`(n=0, 1, %p A271737 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j) %p A271737 *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i)))) %p A271737 end: %p A271737 a:= n-> b(n$2, 8)-b(n$2, 7): %p A271737 seq(a(n), n=8..30); %t A271737 multinomial[n_, k_List] := n!/Times @@ (k!); %t A271737 b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]]; %t A271737 a[n_] := b[n, n, 8] - b[n, n, 7]; %t A271737 Table[a[n], {n, 8, 30}] (* _Jean-François Alcover_, May 08 2018, after _Alois P. Heinz_ *) %Y A271737 Column k=8 of A271423. %K A271737 nonn %O A271737 8,3 %A A271737 _Alois P. Heinz_, Apr 13 2016